毕业论文-程控直流稳压电源设计与实现 11.06.04

发布时间 : 星期一 文章毕业论文-程控直流稳压电源设计与实现 11.06.04更新完毕开始阅读

毕业设计

波,对于输出在几安一下的各种单相整流器来说,常在整流电路输出端并联一个一定电容量的滤波电容C,即为容性负载。

半波整流电路的优点是结构简单,使用的元器件少。但缺点是输出的波形脉动大,直流成分比较低;变压器有半个周期不导电,利用率低;变压器电流含有直流成分,容易饱和。所以只能用在输出功率较小、负载要求不高的场合。

2.1.2单向全波整流电路

单向全波整流电路如图2-3所示。

变压器T次级线圈具有中心抽头,即得到幅值相等而相位差180C的电压V21

o

和V22。在未接滤波电容时,当变压器T的次级线圈的交流电压上(1)正而下(2)负时,VD1受正向电压而导通,VD2受反向电压而截至。于是电流iD1通过VD1流过负载RL。另半个周期,即上(1)负而下(2)正时,VD2受正向电压而导通,VD1受反向电压而截至。于是电流iD2通过VD2流过负载RL。在一个周期内负载电流i0=iD1+iD2为单向脉动电流。负载电压为双半波,因此直流输出平均电压为单相半波整流电路的2倍,即V0=0.9V2。

图2-3 单相全波整流电路

全波整流电路接入滤波电容C,其充放电过程与半波整流相同,但由于V21和V22轮流通过VD1和VD2向电容C充电,所以输出电压的脉动比半波整流时小。

2.1.3 桥式整流电路

桥式整流电路如图2-4所示。

工作原理简介如下:在V2的正半周内,VD1,VD4导通,VD2,VD3截至,在RL上建立起上正下负的脉动电压,如果忽略二极管的管压降及变压器的内阻,则

毕业设计

V0=V2。而在V2的负办周,二极管VD2,VD3导通,VD1,VD4截至,在负载RL上仍建立起上正下负的脉动电压,如果忽略二极管的管压降及变压器的内阻,则V0=V2。由此可以看出,正负办周都有电流流过负载电阻RL,而且流过负载电阻的电流方向是一致的,因而输出电压的直流成分提高,脉动成分降低。

桥式整流电路的电压可作如下估算。整流元件仍认为是理想的,在纯电阻负载条件下,电压的顺时值为:

VO?负载直流电压平均值为

2V2sin?t0??t?2? (2-2)

VO?0.9V2 (2-3)

图2-4 桥式整流电路

每个二极管截止时的反向电压相同,为V2的幅值。即: Vd?同。

综上,桥式整流电路的特点是:与半波整流电路相比,在V2,RL相同的条件下,输出的直流电压提高了一倍;电流脉动程度减小;变压器正负半周都有对称电流流过,既得到充分利用,又不存在单向磁化的问题。所以它的应用较为广泛。但是需要4个整流二极管,线路稍复杂。

以上简单介绍了几种整流电路,根据其优缺点的判断,所以在我的设计中采用了桥式整流电路。一方面,能使电能得到充分利用,另一方面,由于有现成的整流桥集

2V2 (3-4)

导通二极管的电流平均值为负载电流平均值的一半,最大值与负载电流最大值相

毕业设计

成元件,设计起来也比较方便。

2.2 滤波电路

交流电经整流电路后可变为脉动直流电流,其中含有较大的交流分量,为了使设备能用上纯净的直流电,还必须用滤波电路滤除脉动电压中的交流成份。滤波电路一般由电抗元件组成,如在负载电阻两端并联上电容器C,或在负载中串联上电感器L,或由电容,电感组合而成的各中复式滤波电路。

2.2.1 电容滤波电路

电容滤波就是在整流电路后面,用大量的电解电容与负载并联例如以桥式电路为例,整流滤波电路如图2-5所示:

并联在负载两端的电容器C即起滤波作用。下面以有负载RL和无负载RL 两种情况来分析滤波电路的工作原理。无负载,即RL开路时,电路接通瞬间设电容C上起始电压为零。电源接通后,通过整流管及变压器次级给C充电,因导通的二极管及变压器次级电源内阻很小,所以充电时间常数很小,充电电流很大。只要合理选择元件参数,便不会发生过热或烧坏晶体管的现象。当V2达到最大值时,Vc也基本上达到最大值。此后,V2开始减小,导通的二极管由于V2的绝对值小于Vc,处于反偏截至状态。此后,输出电压保持为Vc而不变,Vc?来时,因Vc不变,晶体管也不在导电。

2V2。当V2的负半周到

图2-5电容滤波电路

毕业设计

当有负载RL时,设RL为定值,当电源接通且C上还有近似峰值电压时,电压

波形如图所示。在t1~t4间隔内,输入电压V2>Vc,VD1,VD2导电,电容C充电,Vc随充电过程而上升,到t2以后,V2按正弦规律下降,当Vc>V2时,整流管VD1,VD2处于反向偏置,停止导通;已充电的电容开始对负载电阻RL放电,即暂时代替电源向负载供电。电容C的放电电压按指数曲线下降。在t3瞬间,V2上升到Vc;t3以后,-V2>Vc,电容由放电转换为充电,VD3,VD4导通,构成电源向负载及电容供电的通路。t4以后,-V2

电容滤波器的特点如下:

1 加了滤波电容以后,输出电压的直流成分提高,脉动成分减小。这是利用电容的储能作用来实现的。当二极管导通时,电容充电将能量储存起来;二极管截至时,再把储存的能量释放给负载,一方面使输出电压波形比较平滑,同时也增加了输出电压的平均值。

2 电容滤波放电的时间常数(τ=RLC)愈大,放电过程愈缓慢,输出电压愈高,同时脉动成分愈小,滤波效果愈好。当RLC?∞时,(如负载开路),电容没有放电通路,故VL=2V2。当不加电容滤波时,桥式整流后负载上输出电压的平均值为VL=0.9V2。

3电容滤波电路的输出电压随输出电流的增大而减小。这是由于滤波电路的负载电阻RL减小时,电容的放电过程加快,输出电流的平均值Io增大,而输出电压的平均值VL却减小了。通常把输出电压VL和输出电流Io之间的关系曲线称为电源的外特性。电路输出电压随电流的增大而下降的很快,这种外特性称之为软特性。所以电容滤波电路适合用于负载电流变化不大的场合。

4 电容滤波电路中,整流二极管的导通角小于180度,而且电容放电时间常熟越大,导通角越小。二极管在短暂的导电时间内,有很大的浪涌电流流过,这对管子的寿命不利。所以选用二极管时,应考虑它能承受最大冲击电流的情况。一般选管子时,要求它承受的正向电流的能力应大于平均输出电流的2~3倍。

电容滤波电路简单,制作方便。但是它的输出电流不宜太大,而且要求输出电压的脉动成分较小时,必须增加电容器的容量,因此电路的体积大也不经济。为此,RC-π型滤波电路在实际电路中经常使用。

RC-π型滤波电路如图2-6所示:

它实际上就是在电容滤波的基础上再加上1级RC滤波电路构成的。采用这种滤

联系合同范文客服:xxxxx#qq.com(#替换为@)