结晶学和矿物学 赵珊茸 课后思考题

发布时间 : 星期四 文章结晶学和矿物学 赵珊茸 课后思考题更新完毕开始阅读

理论学科为基础,这些学科包括结晶学、数学、物理学、化学、物理化学等,尤其是固体物理学、量子化学和化学方面的理论及实验技术和计算机科学。它们促进现代矿物学全面发展。同时,矿物学作为相关的地质学科(例如:岩石学、矿床学、地球化学等)和应用学科(例如:材料学、宝石学)的基础,为它们的进一步研究提供了借鉴和理论知识。

第十二章 习题

1.试述地壳中化学元素的丰度特点及其意义。

答:元素在地壳中的丰度是指各种化学元素在地壳中的平均含量。它通常有两种表示方法:质量克拉克值和原子克拉克值。化学元素在地壳中的分布极不均匀,含量最多的前八种元素(O、Si、Al、Fe、Ca、Na、K、Mg)占99%以上。因此,地壳中分布最广的矿物也以这些元素组成。例如:地壳中含氧盐和氧化物分布最广,特别是硅酸盐矿物占矿物总种数的24%,占地壳总重量的3/4。其意义为:地壳化学元素丰度直接影响地壳中矿物种类和含量。

2.矿物学上,划分离子类型的依据是什么?不同类型的离子各有何特点?

答:矿物学上,我们通常根据离子的外层电子构型将其分为三种类型,现分别描述如下:

1)惰性气体型离子 具有与惰性气体原子相同的电子构型,最外层具有8个电子(ns2np6)或2个电子(1s2)的离子。包括碱金属、碱土金属及一些非金属元素的离子。此类离子在自然界极易形成含氧盐(主要是硅酸盐)、氧化物和卤化物,构成地壳中大部分造岩矿物。地质上常将这些元素又称为“亲氧元素”、“亲石元素”或“造岩元素”。 2)铜型离子 外电子层有18个电子(ns2np6nd10)或(18+2)个电子(ns2np6nd10(n+1)s2)的离子。其最外层电子构型同Cu+。主要包括周期表中IB、ⅡB副族及其右邻的某些元素的离子。此类离子常形成以共价键为主的硫化物、含硫盐或类似的化合物,构成主要的金属硫化物矿床中的矿石矿物。这部分元素常称为“亲硫元素”、“亲铜元素”或“造(成)矿元素”。

3)过渡型离子 最外层电子数为9~17的离子。其最外层电子构型为ns2np6nd1~9。主要包括周期表中ⅢB~ⅦB 副族和Ⅷ族元素的离子。其特点是具有未满的6d电子亚层,结构不稳定,易于变价,其性质介于惰性气体型离子与铜型离子之间。

3.何谓化学计量矿物和非化学计量矿物?并举例说明之。为什么当今愈来愈重视矿物非化学计量性的研究?

答:在各晶格位置上的组分之间遵守定比定律、具严格化合比的矿物称为化学计量性矿物。例如:水晶SiO2中的Si:O比值为1:2,铁闪锌矿(Zn,Fe)S中的(Zn+Fe):S比值为1:1等。

对于一些含变价离子矿物来说,当离子的价态发生变化后,为了使变价平衡,矿物晶体内部必然存在某种晶体缺陷(如空位、填隙离子等点缺陷),致使其化学组成偏离理想化合比,不再遵循定比定律,这些矿物称为非化学计量性矿物。例如:FeS化合物可以在高温下通过暴露在真空中或高硫蒸气压下,极容易改变其化学计量性而变为磁黄铁矿的成分(Fe1-xS)。磁黄铁矿中Fe:S比值为(1-x):1(其中,x介于0-0.125之间),不遵循定比定律。

第 17 页 共 17 页

自然界有些矿物的非化学计量性可以作为标型特征,例如:含金硫化物的偏离化学计量的元素比值就具有标型性。

4.何谓胶体矿物?其主要特性有哪些? 答:胶体矿物是指由以水为分散媒、以固相为分散相的水胶凝体而形成的非晶质或超显微隐晶质矿物。从严格意义上说,胶体矿物只是含吸附水的准矿物。

由于胶体的特殊性质,决定了胶体矿物化学成分具有可变性和复杂性的特点。首先,胶体矿物分散相和分散媒的量比不固定。其次,胶体微粒的表面具有很强的吸附能力,而且吸附不必考虑被吸附离子的半径大小、电价的高低等因素,被吸附离子的含量主要取决于该离子在介质中的浓度。从而导致了胶体矿物的化学成分不仅可变,而且相当复杂,其组成中含有在种类和数量上变化范围均较大的被吸附的杂质离子。

5.举例说明水在矿物中的存在形式及作用。不同形式的水在晶体化学式中如何表示?

答:根据矿物中水的存在形式及其在晶体结构中的作用,可将矿物中的水主要分为吸附水、结晶水和结构水3种基本类型,以及性质介于结晶水与吸附水之间的层间水和沸石水2种过渡类型。现就其存在形式及其作用及晶体化学式中的表达列表如下: 类型

存在形式 作用

晶体化学式举例

吸附水

中性水分子(H2O)、不参加晶格的形成,不属于化学成份

机械吸附。特例:蛋白石——胶体矿物,水属于化学成份。

特例:SiO2·nH2O

由于水的含量不固定,因此在H2O前标上n。

结晶水

中性水分子(H2O)形式存在于矿物晶格的一定位置上。

不改变阳离子电价的前提下,环绕在小半径阳离子的周围,增大阳离子的体积。

第 18 页 共 18 页

石膏,Ca[SO4]·2H2O

结构水

以OH-、H+、H3O+离子的形式存在于矿物晶格中的一定配位位置上。

与其它离子牢固地结合

水镁石Mg(OH)2

水云母

(K,H3O+)Al2[AlSi3O10](OH)2

层间水

中性水分子(H2O)形式存在于层状结构硅酸盐结构层之间

与层间阳离子结合形成水合离子

蒙脱石

(Na,Ca)0.33(Al,Mg)2[(Si,Al)4O10] (OH)2·nH2O中,后面的nH2O

沸石水

存在于沸石族矿物晶格中宽大的空腔和通道中的中性水分子

与其中的阳离子结合形成水合离子

钠沸石

Na2[Al2Si3O10]·2H2O

6.引起矿物化学成分变化的主要原因有哪些? 答:类质同像替代和非化学计量性是引起矿物成分在一定范围内变化的主要原因。引起矿物成分变化的其他因素有:阳离子的可交换性、胶体的吸附作用、矿物中含水量的变化及显微包裹体形式存在的机械混入物。

7.试分析下列矿物晶体化学式的含义:

①钙钛矿CaTiO3与钼钙矿Ca[MoO4];

第 19 页 共 19 页

②白云石CaMg[CO3]2与镁方解石(Ca,Mg)[CO3];

③白云母K{Al2[(Si3Al)O10](OH) 2}与多硅白云母K{(Al2-xMgx)[(Si3+xAl1-x)O10](OH) 2};

④硬玉NaAl[Si2O6]与霞石Na[AlSiO4];

⑤蓝晶石AlⅥ[SiO4]O,红柱石AlⅥAlⅤ[SiO4]O与夕线石AlⅥ[AlⅣSiO5](注:式中罗马数字为晶格中Al的配位数)。

答:晶体化学式不仅提供了化合物元素之间比值关系,而且提供了一定晶体结构的信息,不同的化学式能够反映出晶体结构间的差异:

①钙钛矿CaTiO3中,Ca2+和Ti4+均作为普通阳离子与O2-配位,是一种复化合物;钼钙矿Ca[MoO4]中Mo6+与O2-结合形成络阴离子团,然后与Ca2+相结合形成络合物;

②白云石CaMg[CO3]2中的Ca2+和Mg2+是复化合物中的两种阳离子,它们占据特定的晶体结构;镁方解石(Ca,Mg)[CO3]中的Ca2+和Mg2+呈现的是类质同像替代的关系;

③白云母K{Al2[(Si3Al)O10](OH) 2}中Al3+既以普通阳离子的形式存在于硅氧骨干之外,又替代1/4的Si进入到硅氧骨干内形成[AlO4]四面体,中括号内代表硅氧骨干,大括号内代表结构单元层;而与白云母相比较,多硅白云母K{(Al2-xMgx)[(Si3+xAl1-x)O10](OH) 2}中Al3+的作用不变,只是两种位置的Al3+相应地发生了类质同像变化:骨干内Al3+→Si4+少了,但骨干外产生了Mg2+→Al3+;

④硬玉NaAl[Si2O6]与霞石Na[AlSiO4]这两种矿物均属于硅酸盐类,它们中Al3+的作用不同,硬玉NaAl[Si2O6]中的Al3+在硅氧骨干外,起普通阳离子的作用,故硬玉是铝的硅酸盐;霞石Na[AlSiO4]中的Al3+替代部分Si4+进入到硅氧骨干内,故霞石是铝硅酸盐。

⑤蓝晶石AlⅥ[SiO4]O,红柱石AlⅥAlⅤ[SiO4]O与夕线石AlⅥ[AlⅣSiO5]这三种矿物是同质多像关系。它们均是硅酸盐,但Al3+的配位有差异。蓝晶石中Al在硅氧骨干之外,配位数为6;红柱石中的Al也在硅氧骨干之外,但一半的配位数是6,另一半的配位数为5;夕线石中的Al有一半在硅氧骨干外,配位数是6,另一半进入硅氧骨干,配位数是4。

8.已知某硬玉的化学成分(wB%):SiO2 56.35, TiO2 0.32, Al2O3 18.15, Fe2O3 5.22, FeO0.75, MnO 0.03,MgO 2.83, CaO 4.23, Na2O 12.11, K2O 0.02,试计算其晶体化学式(注:硬玉的理想化学式为NaAl[Si2O6])。

答:按照课本P191,表12-4和表12-5的计算步骤和方法,以氧原子法为例,将计算过程列于下表:

第 20 页 共 20 页

联系合同范文客服:xxxxx#qq.com(#替换为@)