光合作用 - 图文

发布时间 : 星期六 文章光合作用 - 图文更新完毕开始阅读

径和CAM途径作为CO2的富集机制是卡尔文循环的有效补充。rubisco酶同时具有羧化和加氧双重反应活性,C2氧化光合碳循环减少了因rubisco酶加氧反应形成2-磷酸乙醇酸造成的毒害和碳损失。卡尔文循环合成的碳水化合物以蔗糖和淀粉两种形式储存。蔗糖在大多数植物中是可移动形式,而淀粉在叶绿体中合成。

光合器官的许多特性可随获得光量的多少而变化,包括光补偿点。同一叶片在同一时间内,光合过程中吸收的CO2和光呼吸及呼吸过程中放出的CO2等量时的光照强度,称为光补偿点。光下生长的植物(或阳生植物、或喜光植物)的叶片的光补偿点就比阴暗处生长的植物(或阴生植物)的叶片要高一些。根据光合作用的光-反应曲线可以计算整个叶片光合作用的量子产额。一般情况下,C3植物的量子产额高于C4植物。CO2扩散进入叶片的过程受到一系列阻力的限制。最大的阻力来自于气孔,孔径的调控为植物控制水分散失和CO2吸收提供了一种最佳的方式。气孔和非气孔因素都能通过影响植物对CO2的吸收对光合作用产生影响。阳光在提供叶片光能的同时也产生了大量的热负荷,这些热量又以长波辐射、感热损耗、或通过蒸腾作用等方式释放到空气中。温度对光合作用也十分重要,光合作用中参与生化反应的酶的活性和叶绿体光合膜系统的稳定性等均受温度的影响。

参考文献

1 Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59: 89-113 2 Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK and Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science, 307: 433-436 3 Kurisu G, Zhang HM, Smith JL and Cramer WA (2003) Structure of cytochrome b6f complex of oxygenic photosynthesis: Turning the cavity. Science, 302: 1009-1014 4 Melis A (1999) Photosystem II damage and repair cycle in Chloroplasts: What modulates the rate of photodamage in vivo? Trends in Plant Science, 4: 130-135 5 Xiong J, Fisher W, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science, 289: 1724-1730 6 Brautigam A, Hoffmann-Benning S and Weber APM (2008) Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelop to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiology, 148: 568-579

7 Halford NG and Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signaling in plants. Journal of Biochemistry, 419: 247-259 8 Lloyd JR, Kossmann J and Ritte G (2005) Leaf Starch degradation comes out of the shadows. Trends in Plant Science, 10: 130-137 9 Michalska J, Zauber H, Buchanan BB, Cejudo FJ and Geigenberger P (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proceedings of the National Academy of Sciences UAS, 106: 9908-9913 10 Ritte G, Heydenreich M, Mahlow S, Haebel S, Kotting O and Steup M (2006) Phosphorylation of C6-and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Letters, 580: 4872-4876 11 Weber APM, Schwacke R and Flugge UI (2005) Solute transporters of the plastid envelop membrane. Annual Review of Plant Biology, 56: 133-164 12 Ainsworth EA and Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Physiologist, 165: 351-371 13 Chazdon RL and Pearcy RW (1991) The importance of sunflecks for forest understory plants. BioScience, 41: 760-766 14 Jarvis AJ, Mansfield TA and Davies WJ (1999) Stomatal behaviour, photosynthesis and transpiration under rising CO2. Plant, Cell and Environment, 22: 639-648 15 Ort DR (2001) When there is too much light. Plant Phsiology, 125: 29-32

16 Pallardy SG (2007) Physiology of Woody Plants, third edition, Elsevier Inc. pp107-168 17 Taiz L and Zeiger E (2010) Plant Physiology, fifth Editions, pp163-242

联系合同范文客服:xxxxx#qq.com(#替换为@)