植物生理学思考题

发布时间 : 星期六 文章植物生理学思考题更新完毕开始阅读

第一章 植物的水分生理

1.将植物细胞分别放在纯水和1mol/L蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?

答:在纯水中,各项指标都增大;在蔗糖中,各项指标都降低。 2.从植物生理学角度,分析农谚“有收无收在于水”的道理。

答:水,孕育了生命。陆生植物是由水生植物进化而来的,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下才能进行,否则,植物的正常生命活动就会受阻,甚至停止。可以说,没有水就没有生命。在农业生产上,水是决定收成有无的重要因素之一。

水分在植物生命活动中的作用很大,主要表现在4个方面:

? 水分是细胞质的主要成分。细胞质的含水量一般在70~90%,使细胞质呈溶胶状态,保

证了旺盛的代谢作用正常进行,如根尖、茎尖。如果含水量减少,细胞质便变成凝胶状态,生命活动就大大减弱,如休眠种子。

? 水分是代谢作用过程的反应物质。在光合作用、呼吸作用、有机物质合成和分解的过程

中,都有水分子参与。

? 水分是植物对物质吸收和运输的溶剂。一般来说,植物不能直接吸收固态的无机物质和

有机物质,这些物质只有在溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输,也要溶解在水中才能进行。

? 水分能保持植物的固有姿态。由于细胞含有大量水分,维持细胞的紧张度(即膨胀),

使植物枝叶挺立,便于充分接受光照和交换气体。同时,也使花朵张开,有利于传粉。 3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的? ? 通过膜脂双分子层的间隙进入细胞。

? 膜上的水孔蛋白形成水通道,造成植物细胞的水分集流。植物的水孔蛋白有三种类型:

质膜上的质膜内在蛋白、液泡膜上的液泡膜内在蛋白和根瘤共生膜上的内在蛋白,其中液泡膜的水孔蛋白在植物体中分布最丰富、水分透过性最大。 4.水分是如何进入根部导管的?水分又是如何运输到叶片的? 答:进入根部导管有三种途径:

? 质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度

快。

? 跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。 ? 共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形

成一个细胞质的连续体,移动速度较慢。 这三条途径共同作用,使根部吸收水分。 根系吸水的动力是根压和蒸腾拉力。

运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。

5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭? ? 保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。

? 保卫细胞细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁

薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。

保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于是吸水膨胀,气孔张开;在黑暗条件下,进行呼吸作用,消耗有机物,升高了渗透势,于是失水,气孔关闭。

6.气孔的张开与保卫细胞的什么结构有关?

? 细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。

? 细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁

易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。

第二章 植物的矿质营养

1.植物进行正常生命活动需要哪些矿质元素?如何用实验方法证明植物生长需这些元素? 答:分为大量元素和微量元素两种: ? 大量元素:C H O N P S K Ca Mg Si ? 微量元素:Fe Mn Zn Cu Na Mo P Cl Ni

实验的方法:使用溶液培养法或砂基培养法证明。通过加入部分营养元素的溶液,观察植物是否能够正常的生长。如果能正常生长,则证明缺少的元素不是植物生长必须的元素;如果不能正常生长,则证明缺少的元素是植物生长所必须的元素。

2.在植物生长过程中,如何鉴别发生缺氮、磷、钾现象;若发生,可采用哪些补救措施? 缺氮:植物矮小,叶小色淡或发红,分枝少,花少,子实不饱满,产量低。

补救措施:施加氮肥。

缺磷:生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,开花期和成熟期都延迟,产量降低,抗性减弱。

补救措施:施加磷肥。 缺钾:植株茎秆柔弱易倒伏,抗旱性和抗寒性均差,叶色变黄,逐渐坏死,缺绿开始在老叶。

补救措施:施加钾肥。

3.生物膜有哪些结构特点,生物膜中有哪些类型的运输蛋白

4.植物细胞通过哪些方式来吸收溶质以满足正常生命活动的需要? (一) 扩散

1.简单扩散:溶质从高浓度的区域跨膜移向浓度较低的邻近区域的物理过程。

2.易化扩散:又称协助扩散,指膜转运蛋白易让溶质顺浓度梯度或电化学梯度跨膜转运,不需要细胞提供能量。

(二) 离子通道:细胞膜中,由通道蛋白构成的孔道,控制离子通过细胞膜。 (三) 载体:跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构。 1.单向运输载体:(uniport carrier)能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。 2.同向运输器:(symporter)指运输器与质膜外的H结合的同时,又与另一分子或离子结合,同一方向运输。 3.反向运输器:(antiporter)指运输器与质膜外侧的H结合的同时,又与质膜内侧的分子或离子结合,两者朝相反的方向运输。

(四) 离子泵:膜内在蛋白,是质膜上的ATP酶,通过活化ATP释放能量推动离子逆化学 势梯度进行跨膜转运。

(五) 胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。 9.根部细胞吸收的矿质元素是通过什么途径和动力运输到叶片

10.在作物栽培时,为什么不能施用过量的化肥,怎样施肥才比较合理?

过量施肥时,可使植物的水势降低,根系吸水困难,烧伤作物,影响植物的正常生理过程。同时,根部也吸收不了,造成浪费。 合理施肥的依据:

? 根据形态指标、相貌和叶色确定植物所缺少的营养元素。

? 通过对叶片营养元素的诊断,结合施肥,使营养元素的浓度尽量位于临界浓度的周围。 ? 测土配方,确定土壤的成分,从而确定缺少的肥料,按一定的比例施肥。 12.细胞吸收水分和吸收矿质元素有什么关系?有什么异同?

关系:水分在通过集流作用吸收时,会同时运输少量的离子和小溶质调节渗透势。 相同点:①都可以通过扩散的方式来吸收。②都可以经过通道来吸收。 不通电:①水分可以通过集流的方式来吸收。

②水分经过的是水通道,矿质元素经过的是离子通道。 ③矿质元素还可以通过载体、离子泵和胞饮的形式来运输。

第三章 植物的光合作用

1.植物光合作用的光反应和碳反应是在细胞的哪些部位进行的?为什么?

答:光反应在类囊体膜(光合膜)上进行的,碳反应在叶绿体的基质中进行的。

原因:光反应必须在光下才能进行的,是由光引起的光化学反应,类囊体膜是光合膜,为光反应提供了光的条件;碳反应是在暗处或光处都能进行的,由若干酶催化的化学反应,基质中有大量的碳反应需要的酶。

2.在光合作用过程中,ATP和NADPH是如何形成的?又是怎样被利用的? 答:形成过程是在光反应的过程中。 ? 非循环电子传递形成了NADPH:PSII和PSI共同受光的激发,串联起来推动电子传递,

从水中夺电子并将电子最终传递给NADP+,产生氧气和NADPH,是开放式的通路。 ? 循环光和磷酸化形成了ATP:PSI产生的电子经过一些传递体传递后,伴随形成腔内外

H浓度差,只引起ATP的形成。

? 非循环光和磷酸化时两者都可以形成:放氧复合体处水裂解后,吧H释放到类囊体腔

内,把电子传递给PSII,电子在光和电子传递链中传递时,伴随着类囊体外侧的H转移到腔内,由此形成了跨膜的H浓度差,引起ATP的形成;与此同时把电子传递到PSI,进一步提高了能位,形成NADPH,此外,放出氧气。是开放的通路。 利用的过程是在碳反应的过程中进行的。

C3途径:甘油酸-3-磷酸被ATP磷酸化,在甘油酸-3-磷酸激酶催化下,形成甘油酸-1,3-二磷酸,然后在甘油醛-3-磷酸脱氢酶作用下被NADPH还原,形成甘油醛-3-磷酸。

C4途径:叶肉细胞的叶绿体中草酰乙酸经过NADP-苹果酸脱氢酶作用,被还原为苹果酸。C4酸脱羧形成的C3酸再运回叶肉细胞,在叶绿体中,经丙酮酸磷酸双激酶催化和ATP作用,生成CO2受体PEP,使反应循环进行。 4.光和作用的氧气是怎样产生的?

答:水裂解放氧是水在光照下经过PSII的放氧复合体作用,释放氧气,产生电子,释放质子到类囊体腔内。放氧复合体位于PSII类囊体膜腔表面。当PSII反应中心色素P680受激发后,把电子传递到脱镁叶绿色。脱镁叶绿素就是原初电子受体,而Tyr是原初电子供体。失去电子的Tyr又通过锰簇从水分子中获得电子,使水分子裂解,同时放出氧气和质子。 5.Rubisco的结构有何特点?它在光合碳同化过程中有什么作用

6.光合作用的碳同化有哪些途径?试述水稻、玉米、菠萝的光合碳同化途径有什么不同? 答:有三种途径C3途径、C4途径和景天酸代谢途径。 水稻为C3途径;玉米为C4途径;菠萝为CAM。 植物种类 C3 温带植物 C4 热带植物 CAM 干旱植物 固定酶 CO2受体 初产物 Rubisco RUBP PGA PEPcase/Rubisco RUBP/PEP OAA PEPcase/Rubisco RUBP/PEP OAA 7.一般来说,C4植物比C3植物的光合产量要高,试从它们各自的光合特征以及生理特征比较分析。 叶片结构 叶绿素a/b CO2固定酶 CO2固定途径 最初CO2接受体 光合速率 CO2补偿点 饱和光强 光合最适温度 羧化酶对CO2亲和力 光呼吸 C3 无花环结构,只有一种叶绿体 2.8+-0.4 Rubisco 卡尔文循环 RUBP 低 高 全日照1/2 低 低 高 C4 有花环结构,两种叶绿体 3.9+-0.6 PEPcase/Rubisco C4途径和卡尔文循环 PEP 高 低 无 高 高,远远大于C3 低 总体的结论是,C4植物的光合效率大于C3植物的光合效率。

8.从光呼吸的代谢途径来看,光呼吸有什么意义?

光呼吸的途径:在叶绿体内,光照条件下,Rubisco把RUBP氧化成乙醇酸磷酸,之后在磷酸酶作用下,脱去磷酸产生乙醇酸;在过氧化物酶体内,乙醇酸氧化为乙醛酸和过氧化氢,过氧化氢变为洋气,乙醛酸形成甘氨酸;在线粒体内,甘氨酸变成丝氨酸;过氧化物酶体内形成羟基丙酮酸,最终成为甘油酸;在叶绿体内,产生甘油-3-磷酸,参与卡尔文循环。 ? 在干旱和高辐射期间,气孔关闭,CO2不能进入,会导致光抑制。光呼吸会释放CO2,

消耗多余的能量,对光合器官起到保护的作用,避免产生光抑制。 ? 在有氧条件下,通过光呼吸可以回收75%的碳,避免损失过多。 ? 有利于氮的代谢。

9.卡尔文循环和光呼吸的代谢有什么联系?

? 卡尔文循环产生的有机物的1/4通过光呼吸来消耗。

? 氧气浓度高时,Rubisco作为加氧酶,是RUBP氧化,进行光呼吸;CO2高时,Rubisco

作为羧化酶,使CO2羧化,进行卡尔文循环。

? 光呼吸的最终产物是甘油酸-3-磷酸,参与到卡尔文循环中。 11.C3植物、C4植物和CAM在固定CO2方面的异同。 受体 固定酶 进行的阶段 初产物 能量使用 第六章 植物体内有机物的运输

1.植物叶片中合成的有机物质是以什么形式和通过什么途径运输到根部?如何用实验证明植物体内有机物运输的形式和途径?

答:形式主要是还原性糖,例如蔗糖、棉子糖、水苏糖和毛蕊糖,其中以蔗糖为最多。运输

C3 RUBP Rubisco CO2羧化、CO2还原、更新 C4 PEP PEPcase/Rubisco CO2羧化、转变、脱羧与还原、再生 CAM PEP PEPcase/Rubisco 羧化、还原、脱羧、C3途径 PGA OAA 先NADPH后ATP OAA

联系合同范文客服:xxxxx#qq.com(#替换为@)