华东师范大学硕士研究生入学考试《运动生理学》复习资料总结

发布时间 : 星期二 文章华东师范大学硕士研究生入学考试《运动生理学》复习资料总结更新完毕开始阅读

华东师范大学硕士研究生入学考试《运动生理学》复习资料总结

肌肉活动的能量供应

1.能量与生命的关系如何,是怎样实现的?

人体生命活动是一个消耗能量的过程,而肌肉活动又是消耗能量最多的一种活动形式。运动时,人体不能直接利用太阳能、电能等各种物理形式的能量,只能直接利用储存在高能化合物三磷酸腺苷分子中蕴藏的化学能,与此同时糖、脂肪、蛋白质则可通过各自的分解代谢,将储存在分子内部的化学能逐渐释放出来,并使部分能量转移和储存到ATP分子之中,以保证ATP供能的持续性。 2.不同运动中,ATP供能与间接能源的动用关系?

1.ATP是人体内一切生命活动能量的直接来源,而能量的间接来源是指糖、脂肪和蛋白质。2.糖是机体最主要,来源最经济,供能又快速的能源物质,一克糖在体内彻底氧化可产生4.1千卡的热量,机体正常情况下有60%的热量由糖来提供。

3.在进行剧烈运动时,糖进行无氧分解供能,1分子的糖原或葡萄糖可产生3-2分子的ATP,可利用的热量不到糖分子结构中重热量的5%,能量利用率很低,但产能速率很高。

4.在进行强度不是太大的运动时,糖进行有氧分解供能,此时1分子的糖原或葡萄糖可生成39-38分子的ATP,糖分子结构中的热量几乎全部可以被利用,但产能速率较低。

5.脂肪是一种含热量最多的营养物质,1克脂肪在体内彻底氧化可产生9.3千卡的热量,他是长时间肌肉运动的重要能源。

6.体内脂肪首先通过脂肪动员,分解为甘油和脂肪酸。甘油经系列反应步骤,可循糖代谢途径氧化,由于肌肉内缺乏磷酸甘油激酶,故甘油直接为肌肉供能的意义不大。脂肪酸进入细胞后,在线粒体外膜活化,经肉碱转运至内膜,再经?氧化逐步生成乙酰辅酶,之后经三羧酸循环逐步释放出大量能量供ADP再合成ATP,此过程是脂肪氧化分解供能的主要途径。

蛋白质分解供能是由氨基酸代谢实现的,但蛋白质分解供能很不经济,故一般情况不作为主要供能物质。

3.三种能源系统为什么能满足不同强度的运动需要? 这是由他们各自的供能特点所决定的。

1.磷酸原系统的供能特点:供能总量少,持续时间短,功率输出最快,不需要氧,不产生乳酸类等中间产物。所以磷酸原系统是一切高功率输出运动项目的物质基础,数秒钟内要发挥最大能量输出,只

1

能依靠ATP-CP系统。如短跑、投掷、跳跃、举重等运动项目。此外,测定磷酸原系统的功率输出还是评定高功率运动项目训练效果和训练方法的一个重要指标。

2.乳酸能系统的供能特点:供能总量较磷酸原系统多,持续时间短,功率输出次之,不需要氧,终产物是导致疲劳的物质乳酸。乳酸能系统供能的意义在于,保证磷酸原系统最大供能后仍能维持数十秒快速供能,以应付机体短时间内的快速需要。如400米跑、100米跑等,血乳酸水平是衡量乳酸能系统供能能力的最常用的指标。

3.有氧氧化系统供能特点:ATP生成量很大,但速率很低,持续的时间很长,需要氧的参与,终产物是水和二氧化碳,不产生乳酸类的副产品。有氧氧化系统是进行长时间活动的物质基础。如3000米跑、马拉松等。最大摄氧量和无氧阈等是评定有氧工作能力的主要生理指标。 4.糖作为能源物质为什么要优于脂肪,蛋白质为何不是主要能源? 1.糖作为能源物质优于脂肪和蛋白质是由其特点决定的。

2.在满足不同强度运动时,既可以有氧分解供能,也可以无氧分解供能,在参与供能时动员快、消耗的氧量少、能量产生的效率高。因此,糖是肌肉活动时最重要的能源物质,而且机体正常情况下有60%的热量由糖来提供。蛋白质的分解供能是由氨基酸代谢实现的,体内不是所有氨基酸都能参与分解供能,由于肌肉内含有丰富的转氨酶,通过脱氨基和氧化等复杂过程,转变成丙酮酸等,这些物质再通过不同途径参与三羧酸循环的氧化分解供能。蛋白质分解供能很不经济,所以一般情况不作为主要供能物质。

5.简述能量统一体理论的及在体育实践中的应用意义?

1.运动生理学把完全不同的运动项目所需要的能量之间,以及各能量系统供应的途径之间相互联系所形成的整体叫能量统一体。

2.表现为把三个能量系统按能量输出方式的比例或按每个能量系统最大输出所能持续的时间等可分为两种表现形式,一种是以有氧和无氧供能百分比的表现形式;另一种是以运动时间为区分标准的表现形式。

3.能量统一体在体育实践中的应用:

人体运动能力在很大程度上取决于能量输出的供应能力。

1着重发展起主要作用的供能系统。能量统一体理论提示,不同的运动项目其主要的供能系统是不同○

的,在制定教学、训练时,应着重发展在该项活动中其主导作用的供能系统,如:短跑重点发展无氧供能系统能力,长跑应重点发展有氧供能能力。

2

2制定合理的训练计划。当确定应着重发展的供能系统之后,关键是选择有效的训练方法。 ○

若要训练一名3000米跑的运动员,应先了解该项目起主导作用的有氧系统,其次是乳酸能系统,然后采用间歇训练、速度游戏、反复跑等适合发展3000米跑所需能量系统的手段方法加以训练。当然,具体的训练计划还需要考虑到运动技术的专门性。 如何理解肌肉活动能量代谢的动态变化特征?

1.ATP供能的连续性。肌肉工作所完成的各种运动形式即技术动作,可能是周期性的、非周期性的、混合性的;也可能是间断性的、连续性的。在完成所有运动时,能量供应必须是连续的,否则肌肉工作会因能量供应中断而无法实现。也就是说,ATP的消耗与其再合成必须是连续的。

2.耗能与产能之间的匹配性。肌肉活动随运动强度的变化而对能量需求有所不同。强度越大,耗能也越大,这就要求产能速率必须与耗能强度相匹配。否则,运动就不能以该强度持续运动,这是由ATP供能的连续性决定的。三个能量系统输出功率不同,分别满足不同运动强度的需要。

3.供能途径与强度的对应性。肌肉在完成不同强度运动时,优先启动不同的供能系统与运动强度的对应性是由产能和耗能速率的匹配关系决定的。

4.无氧供能的暂时性。根据能量统一体理论,ATP再合成的无氧方式与有氧方式是一个统一体。启动哪一种方式供能取决于运动强度的变化,当运动强度耗能速率大于有氧产能最大速率时,必然动用产能更快的无氧方式,以满足该状态的代谢需要。由于无氧代谢的终产物会很快限制其代谢过程。因此,无氧供能维持的时间只能是暂时的。

5.有氧代谢的基础性。从细胞的结构与功能来看,有氧供能是机体生命活动最基本的代谢方式。它有完善的代谢场所、途径、方式和调节系统,最终把代谢物氧化分解成水和二氧化碳排出体外,三大营养物的能量利用率也最彻底。另外,运动时无氧代谢产物的清除及疲劳和能源物质的恢复等都必须依赖于有氧代谢来完成。

7.如何用运动强度与时间的变量因素对运动中能量代谢进行动态分析?

在人体的所有运动中,运动强度和时间都符合这样一个规律,即:强度大,维持时间必然短;时间长,维持强度一定小。以下是根据运动强度和时间的变换,对能量系统的动用的动态变化分析。 1.最大强度的短时间运动。它包括爆发式非周期性和连续式周期性最大强度运动。最大强度的运动必须启动能量输出功率最快的磷酸原系统。由于该系统供能可持续7.5秒左右,因此,首先动用CP供能。当达到CP供能极限而运动还必须持续下去时,必然启动能量输出功率次之的乳酸能系统,表现为运动强度略有下降,直至运动结束。这样的供能运动一般不会超过2分钟,以无氧供能为基础。

3

联系合同范文客服:xxxxx#qq.com(#替换为@)