X射线荧光光谱法进展与应用

发布时间 : 星期四 文章X射线荧光光谱法进展与应用更新完毕开始阅读

X射线荧光光谱法的进展(1)——X射线光谱法的发展历程

X射线荧光(以下简称XRF)光谱法的基本原理是当物质中的原子受到适当的高能辐射的激发后,放射出该原子所具有的特征X射线。根据探测到该元素特征X射线的存在与否的特点,可以定性分析;而其强度的大小可作定量分析。该法具有准确度高,分析速度快,试样形态多样性及测定时的非破坏性等特点,它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6,与分离、富集等手段相结合,可达10-8。测量的元素范围包括周期表中从F~U的所有元素。一些较先进的X射线荧光分析仪器还可测定铍、硼、碳等超轻元素。而多道XRF分析仪,在几分钟之内可同时测定20多种元素的含量。

伦琴在1895年发现X射线。其后1927年用X射线光谱发现化学元素Hf,证实可以用X射线光谱进行元素分析。1948年美国海军实验室首次研制出波长色散X射线荧光光谱仪。20世纪60年代中期开始在工业部门推广这项技术,我国在那时开始引进刚开始商品化的早期X射线荧光光谱仪。山于半导体探测器的出现,70年代开始出现能量色散X射线光谱仪。由于微型计算机的出现,70年代末到80年代初,使X光谱分析技术无论在硬件、软件还是方法上都有突飞猛进的发展。进入90年代以来,随着空间、生物、医学、环境和材料科学的发展,其需求进一步刺激X射线光谱学的发展,主要体现在各种新探测器、新激发源及相关元器件的开发上,新器件的优越性又促成新的测试技术。X射线光谱学又面临一个大发展的局面。由于XRFA在主次量元素分析上的无可比拟的优势,以及现代X射线荧光光谱仪器的发展,XRFA已经成为一门成熟的成分分析技术,在冶金、地质、建材、石油、生物、环境等领域均有广泛的应用。

X射线荧光光谱法进展(2)——X射线荧光光谱仪分类

60年代末70年代初以来,X射线荧光光谱仪大致分为使用晶体分光的色散型和不使用晶体分光的非色散型两类。使用半导体探测器的X射线荧光光谱仪当初被划为非色散型光谱仪的一种,但由于近年来半导体探测器性能(特别是能量分辨率)提高,使用技术发展,现已被确定为一个能量色散的新分支。与此同时,分类方法也就变成了如下形式:

①波长色散型,一般说的X射线荧光光谱仪都是指使用晶体分光的波长色散型光谱仪。这类仪器又可分为两种,一种是对各元素逐一进行角度扫描顺序进行测定的所谓扫描式光谱仪;

另一种是每个元素都单独配备一个固定的测角器同时分析多个元素的所谓多元素同时分析式X荧光光谱仪,还有一种是前两种组合在一起,既有顺序扫描仪又有各种元素的固定分析器。扫描式仪器的示意图见图2-1。

多元素同时分析式仪器特别适用于作炉前的快速分析(图2-2)

③能量色散型。以带有半导体探测器和多道脉冲高度分析器为特征的X射线荧光光谱仪叫做能量色散型光谱仪。因其具有能同时测定多个元素(还能测背景)的优点,且数据处理快,故应用领域日益扩大。能量色散型仪器将于以后扼要叙述。

③非色散型。如图2-3所示,一般使用正比计数器作探测器,因其能量分辨率所限,常需要使用滤光片。X射线源用放射性同位素(RI)或用小型X射线管。因其分析对象是组成元素简单的样品,且形状小巧故常当作专用仪器或便携式仪器使用。

④近年来出现了由波长色散型与能量色散型组合在一起的X射线荧光光谱仪,兼备各自的特长,以满足特殊分析的要求。

X射线荧光光谱法进展(3)

——XRFA技术进展

1.1 同步辐射X射线荧光(Synchrotron Radiation-X Ray Fluorescence, SR-XRF)分析 作为XRF的一种新光源,同步辐射利用储存环中高速运转电子来激发试样,由于其具有高亮度、稳定性好、光谱范围广、连续可调和发射角小、准直性好、光束偏振、背景很低的优点,引起分析化学家的极大兴趣。SR-XRF可以在微米级范围内进行元素定量,检出限达到1× 10-15左右,而且由于 SR-XRF是选择诱发 X射线发射光谱,吸收限的化学漂移反映了化学环境内层电子束缚能的系统变化,用SR-XRF分析μg/g级或10-10g痕量元素的化学态是可能的。可以用 SR-XRF分析环保样品中ng/g级的痕量元素,借以研究环境中重元素和其他痕量元素的显微分布。20世纪90年代以来,北京同步辐射装置(BSRF)、国家同步辐射实验室(NSRL合肥)及同步辐射研究中心(SR-RC新竹)相继投入运行,为各领域的科学家提供了良好的实验光源。第三代同步辐射光源和全反射 X射线荧光技术相结合,有可能将检测限降至10-18g。

X射线荧光光谱法进展(4)

——XRFA技术进展

1.2 全反射X射线荧光(Total Reflection X Ray Fluorescence, TXRF)分析

作为一门20世纪80年代发展起来的高灵敏痕量分析技术,全反射X射线荧光分析主要利用X射线在平滑表面上发生的全反射现象,由于X射线穿透样品极浅,大大降低了X射线的背景并基本上能消除基体效应,具有极高的灵敏度,所能达到的检出限为 l pg或0.03ppb,特别适用于样品表层的痕量元素分析。由于TXRF极低的检出限,其应用范围日益扩大。有人用 TXRF分析了从氧到稀土元素,当用不同的反射体时,检出限可达ng/g。先经化学富集可达pg/g级。TXRF由于检出限低,不破坏样品,样品用量少,用于法庭分析特别引人注意。国内TXRF分析起步较晚,北京高能物理所于 1989年建立了TXRF装置,并测定了水中多种痕量元素,绝对检出限在10ng以下,相对误差约10%。全反射X荧光分析技术由于其极低的检出限,预计将在生物工程,地质、材料、环境科学及微电子工业等方面,有更加广泛的应用。

北京意力博通技术发展有限公司销售德国生产的PicoTAX便携式全反射X射线荧光分析仪,主要用于空气悬浮粒、液体和固体样品及污染物的定性和定量多元素分析。据称,PicoTAX

联系合同范文客服:xxxxx#qq.com(#替换为@)