材料科学基础习题07

发布时间 : 星期五 文章材料科学基础习题07更新完毕开始阅读

109,600 113,800 121,300 126,900 127,600

113,800(破断)

41.6 42.4 44.0 46.0 48.0 50.2

试计算其抗拉强度?b,屈服强度?0.2,弹性模量?以及延伸率?。

6. 将一根长为20m,直径为14mm的铝棒通过孔径为12.7mm的模具拉拔,求a)这根铝棒拉

拔后的尺寸;b)这根铝棒要承受的冷加工率。

7. 确定下列情况下的工程应变?e和真应变?T,说明何者更能反映真实的变形特性: a)由L伸长至1.1L; b)由h压缩至0.9h; c)由L伸长至2L; d)由h压缩至0.5h。

8. 对于预先经过退火的金属多晶体,其真实应力—应变曲线的塑性部分可近似表示为

,其中k和n为经验常数,分别称为强度系数和应变硬化指数。若有A,B两

种材料,其k值大致相等,而nA=0.5,nB=0.2,则问a)那一种材料的硬化能力较高,为什么?b)同样的塑性应变时,A和B哪个位错密度高,为什么?c)导出应变硬化指数n

和应变硬化率 之间的数学公式。

9. 有一70MPa应力作用在fcc晶体的[001]方向上,求作用在(111)

移系上的分切应力。

和(111) 滑

10. 有一bcc晶体的 [111]滑移系的临界分切力为60MPa,试问在[001]和[010]方向必须

施加多少的应力才会产生滑移?

11. Zn单晶在拉伸之前的滑移方向与拉伸轴的夹角为45?,拉伸后滑移方向与拉伸轴的夹角为

30?,求拉伸后的延伸率。

12. Al单晶在室温时的临界分切应力?C =7.9×105Pa。若室温下对铝单晶试样作为拉伸试验时,

拉伸轴为[123]方向,试计算引起该样品屈服所需加的应力。

13. Al单晶制成拉伸试棒(其截面积为9mm2)进行室温拉伸,拉伸轴与[001]交成36.7?,与

[011]交成19.1?,与[111]交成22.2?,开始屈服时载荷为20.40N,试确定主滑移系的分切应力。

14. Mg单晶体的试样拉伸时,三个滑移方向与拉伸轴分别交成38°、45°、85°,而基面法

线与拉伸轴交成60°。如果在拉应力为2.05MPa时开始观察到塑性变形,则Mg的临界分切应力为多少?

15. MgO为NaCl型结构,其滑移面为{110},滑移方向为<110>,试问沿哪一方向拉伸(或压

缩)不能引起滑移?

16. 一个交滑移系包括一个滑移方向和包含这个滑移方向的两个晶面,如bcc晶体的(101)

(110),写出bcc晶体的其他三个同类型的交滑移系。

17. fcc和bcc金属在塑性变形时,流变应力与位错密度?的关系为 ,式中

?0为没有干扰位错时,使位错运动所需的应力,也即无加工硬化时所需的切应力,G为切变模量,b为位错的柏氏矢量,?为与材料有关的常数,为0.3~0.5。实际上,此公式也是加工硬化方法的强化效果的定量关系式。若Cu单晶体的?0=700kPa,初始位错密度?0=105cm-2,则临界分切应力为多少?已知Cu的G=42?103MPa,b=0.256nm,[111] Cu单晶产生1%塑性变形所对应的?=40MPa,求它产生1%塑性变形后的位错密度。 18. 证明:bcc及fcc金属产生孪晶时,孪晶面沿孪生方向的切变均为0.707。

19. 试指出Cu和?-Fe两晶体易滑移的晶面和晶向,并求出他们的滑移面间距,滑移方向上

的原子间及点阵阻力。(已知GCu=48.3GPa,G?-Fe=81.6GPa,v=0.3).

20. 设运动位错被钉扎以后,其平均间距 (?为位错密度),又设Cu单晶已经应变硬化

到这种程度,作用在该晶体所产生的分切应力为14 MPa,已知G=40GPa,b=0.256nm,计

算Cu单晶的位错密度。

21. 设合金中一段直位错线运动时受到间距为?的第二相粒子的阻碍,试求证使位错按绕过

机制继续运动所需的切应力为:

量,G—切变模量,r0—第二相粒子半径,B—常数。

,式中T—线张力,b—柏氏矢

22. 40钢经球化退火后渗碳体全部呈半径为10?m的球状,且均匀地分布在??Fe基础上。已

知Fe的切变模量G=7.9×104Mpa,??Fe的点阵常数a=0.28nm,试计算40钢的切变强度。

23. 已知平均晶粒直径为1mm和0.0625mm的?-Fe的屈服强度分别为112.7MPa和196MPa,

问平均晶粒直径为0.0196mm的纯铁的屈服强度为多少?

24. 已知工业纯铜的屈服强度??S =70MPa,其晶粒大小为NA=18个/mm2,当NA=4025个/mm2时,

??S =95MPa。试计算NA=260个/mm2时的

25. 简述陶瓷材料(晶态)塑性变形的特点。 26. 脆性材料的抗拉强度可用下式来表示:

式中??为名义上所施加的拉应力,l为表面裂纹的长度或者为内部裂纹长度的二分之一,r为裂纹尖端的曲率半径,??m实际上为裂纹尖端处应力集中导致最大应力。现假定Al2O3陶瓷的表面裂纹的临界长度为l=2×10-3mm,其理论的断裂强度为E/10,E为材料的弹性模量等于393GPa,试计算当Al2O3陶瓷试样施加上275MPa拉应力产生断裂的裂纹尖端临界曲率半径rC。

27. 三点弯曲试验常用来检测陶瓷材料的力学行为。有一圆形截面Al2O3试样,其截面半径

r=3.5mm,两支点间距为50mm,当负荷达到950N,试样断裂。试问当支点间距为40mm时,具有边长为12mm正方形截面的另一同样材料试样在多大负荷会发生断裂?

28. 对许多高分子材料,其抗拉强度??b是数均相对分子质量

的函数:

式中??0为无限大分子量时的抗拉强度,A为常数。已知二种聚甲基丙烯酸甲酯的数均相对分子质量分别为4×104和6×104,所对应的抗拉强度则分别为107MPa和170MPa,试确定数均相对分子质量为3×104时的抗拉强度??b。

29. 解释高聚物在单向拉伸过程中细颈截面积保持基本不变现象。

30. 现有一?6mm铝丝需最终加工至?0.5mm铝材,但为保证产品质量,此丝材冷加工量不能

超过85%,如何制定其合理加工工艺?

31. 铁的回复激活能为88.9 kJ/mol,如果经冷变形的铁在400℃进行回复处理,使其残留加

工硬化为60%需160分钟,问在450℃回复处理至同样效果需要多少时间?

32. Ag冷加工后位错密度为1012/cm2,设再结晶晶核自大角度晶界向变形基体移动,求晶界弓

出的最小曲率半径(Ag: G=30GPa,b=0.3nm,??=0.4J/m2)。

33. 已知纯铁经冷轧后在527℃加热发生50%的再结晶所需的时间为104s,而在727℃加热产

生50%再结晶所需时间仅为0.1s,试计算要在10s时间内产生50%的再结晶的最低温度为多少度?

34. 假定将再结晶温度定义为退火1小时内完成转变量达95%的温度,已知获得95%转变量所

5

需要的时间t0.95:

式中 、G分别为在结晶的形核率和长大线速度: ,

a)根据上述方程导出再结晶温度TR与G0、N0、Qg及Qn的函数关系;

b)说明下列因素是怎样影响G0、N0、Qg及Qn 的:1)预变形度;2)原始晶粒度;3)金属纯度。 c)说明上述三因素是怎样影响再结晶温度的。

35. 已知Fe的Tm=1538℃,Cu的Tm=1083℃,试估算Fe和Cu的最低再结晶温度。 36. 工业纯铝在室温下经大变形量轧制成带材后,测得室温力学性能为冷加工态的性能。查

表得知工业纯铝的T再=150℃,但若将上述工业纯铝薄带加热至100℃,保温16天后冷至室温再测其强度,发现明显降低,请解释其原因。

37. 某工厂用一冷拉钢丝绳将一大型钢件吊入热处理炉内,由于一时疏忽,未将钢绳取出,

而是随同工件一起加热至860℃,保温时间到了,打开炉门,欲吊出工件时,钢丝绳发生断裂,试分析原因。

38. 已知H70黄铜(30%Zn)在400℃的恒温下完成再结晶需要1小时,而在390℃完成再结

晶需要2小时,试计算在420℃恒温下完成再结晶需要多少时间?

39. 设有1cm3黄铜,在700℃退火,原始晶粒直径为2.16?10-3cm,黄铜的界面能为0.5J/m2,

由量热计测得保温2小时共放出热量0.035J,求保温2小时后的晶粒尺寸。

40. 设冷变形后位错密度为1012/cm2的金属中存在着加热时不发生聚集长大的第二相微粒,

其体积分数f=1%,半径为1?m,问这种第二相微粒的存在能否完全阻止此金属加热时再结晶(已知G=105MPa,b=0.3nm,比界面能?=0.5J/m2)。

41. W具有很高的熔点(Tm=3410℃),常被选为白炽灯泡的发热体。但当灯丝存在横跨灯丝的

大晶粒,就会变得很脆,并在频繁开关的热冲击下产生破断。试介绍一种能延长灯丝寿命的方法。

联系合同范文客服:xxxxx#qq.com(#替换为@)