钢筋混凝土结构课件

发布时间 : 星期四 文章钢筋混凝土结构课件更新完毕开始阅读

和预应力混凝土,上海电视塔高468m,其高度为亚洲第一。此外,在大跨度的公共钢筋混凝土桁架、门式刚架、拱、薄壳等结构形式也有广泛应用。

在铁路、公路、城市的立交桥、高架桥、地铁隧道,以及水利港口等交通工程中用钢筋混凝土建造的水闸、水电站、船坞和码头已是星罗棋布。正在兴建的长江三峡水利枢纽工程,大坝高186m,坝体混凝土用量达1527万m3,是世界上最大的水利工程。

近年来,我国在混凝土基本理论与设计方法、结构可靠度与荷载分析、工业化建筑体系、结构抗震与有限元方法、电子计算机在混凝土结构中的应用以及现代化测试技术等方面的研究也取得了很多新的成果,某些方面已达到或接近国际水平。钢筋混凝土结构的设计和研究向更完善更科学的方向发展。

此外,在混凝土结构设计理论和设计方法方面通过大量研究,取得了很大成绩。新颁布的《混凝土结构设计规范》 (GB50010-2002)积累了半个世纪以来丰富的工程实践经验和最新的科研成果,把我国混凝土结构设计方法提高到了当前的国际水平,它将在工程设计中发挥指导作用。

1.3 1.3 学习本课程要注意的问题

混凝土结构课程通常按内容的性质可分为“混凝土结构设计原理”和“混凝土结构设计”两部分。前者主要讲述各种混凝土基本构件的受力性能、截面设计计算方法和构造等混凝土结构的基本理论,属于专业基础课内容。后者主要讲述梁板结构、单层厂房、多层和高层房屋等的结构设计,属于专业课内容。通过本课程的学习,并通过课程设计和毕业设计等实践性教学环节,使学生初步具有运用这些理论知识正确进行混凝土结构设计和解决实际技术问题的能力。

学习本课程时,建议注意下面一些问题: 1.加强实验、实践性教学环节并注意扩大知识面

混凝土结构的基本理论相当于钢筋混凝土及预应力混凝土的材料力学,它是

以实验为基础的,因此除课堂学习以外,还要加强实验的教学环节,以进一步理解学习内容和训练实验的基本技能。当有条件时,可进行简支梁正截面受弯承载力、简支梁斜截面受剪承载力、偏心受压短柱正截面受压承载力的实验。

混凝土结构课程的实践性很强,因此要加强课程作业、课程设计和毕业设计等实践性教学环节的学习,并在学习过程中逐步熟悉和正确运用我国颁布的一些设计规范和设计规程。诸如:

《建筑结构可靠度设计统一标准》(GB 50068)、《建筑结构荷载规范》(GB 50009-2001)、《混凝土结构设计规范》(GB50010-2002)、《建筑抗震设计规范》( GB50011-2001)、《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3-91)等。

混凝土结构是一门发展很快的学科,学习时要多注意它的新动向和新成就,以扩大知识面。

2.突出重点,并注意难点的学习

本课程的内容多、符号多、计算公式多、构造规定也多,学习时要遵循教学大纲的要求,贯彻“少而精”的原则,突出重点内容的学习。例如,第4章是上册中的重点内容,把它学好了,就为后面各章的学习打下了好的基础。对学习中的难点要找出它的根源,以利于化解。例如,上册第5章中的抵抗弯矩图常是难点,如果知道了画抵抗弯矩图的目的在于弯起、截断梁内纵向受力钢筋,难点也就基本上化解了。

3.深刻理解重要的概念,熟练掌握设计计算的基本功,切忌死记硬背 教学大纲中对要求深刻理解的一些重要概念作了具体的规定。注意,深刻理解往往不是一步到位的,而是随着学习内容的展开和深入,逐步加深的。例如,学习上册中的第9章和下册中的第12章后就要回过头来,加深对适筋梁正截面受弯三个受力阶段的理解。

要求熟练掌握的设计计算内容也在教学大纲中有明确的规定,它们是本课程的基本功。熟练掌握是指正确、快捷。为此,本教材各章后面给出的习题是要求认真完成的。应该是先复习教学内容,搞懂例题后再做习题,切忌边做题边看例题。习题的正确答案往往不是唯一的,这也是本课程与一般的数学、力学课程所不同的。

对构造规定,也要着眼于理解,切忌死记硬背。事实上,不理解的东西也是难以记住的。当然,对常识性的构造规定是应该知道的。

思 考 题

1.1 钢筋混凝土梁破坏时有哪些特点?钢筋和混凝土是如何共同工作的?

1.2 钢筋混凝土结构有哪些优点和缺点?

1.3 本课程主要包括哪些内容?学习本课程要注意哪些问题?

第 2 章 混凝土结构材料的物理力学性能

本 章 提 要

钢筋与混凝土的物理力学性能以及共同工作的特性直接影响混凝土结构和构件的性能,也是混凝土结构计算理论和设计方法的基础。本章讲述钢筋与混凝土的主要物理力学性能以及混凝土与钢筋的粘结。

2.1 混凝土的物理力学性能

2.1.1 混凝土的组成结构

普通混凝土是由水泥、砂、石材料用水拌合硬化后形成的人工石材,是多相复合材料。通常把混凝土的结构分为三种基本类型:微观结构即水泥石结构;亚微观结构即混凝土中的水泥砂浆结构;宏观结构即砂浆和粗骨料两组分体系。 微观结构(水泥石结构)由水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的化学矿物成分、粉磨细度、水灰比和凝结硬化条件等。混凝土的宏观结构与亚微观结构有许多共同点,可以把水泥砂浆看作基相,粗骨料分布在砂浆中,砂浆与粗骨料的界面是结合的薄弱面。骨料的分布以及骨料与基相之间在界面的结合强度也是重要的影响因素。

浇注混凝土时的泌水作用会引起沉缩,硬化过程中由于水泥浆水化造成的化学收缩和干缩受到骨料的限制,会在不同层次的界面引起结合破坏,形成随机分布的界面裂缝。

混凝土中的砂、石、水泥胶体组成了弹性骨架,主要承受外力,并使混凝土具有弹性变形的特点。而水泥胶体中的凝胶、孔隙和界面初始微裂缝等,在外力作用下使混凝土产生塑性变形。另一方面,混凝土中的孔隙、界面微裂缝等缺陷又往往是混凝土受力破坏的起源。

由于水泥胶体的硬化过程需要多年才能完成,所以混凝土的强度和变形也随时间逐渐增长。

2.1.2 2.1.2 单轴向应力状态下的混凝土强度

混凝土的强度与水泥强度等级、水灰比有很大关系;骨料的性质、混凝土的

联系合同范文客服:xxxxx#qq.com(#替换为@)