2019年整理基于C51单片机资料

发布时间 : 星期五 文章2019年整理基于C51单片机资料更新完毕开始阅读

初始化 设置1820个数 匹配ROM 跳过ROM 读存储器 变换温度 存放在缓冲区指针增1 等待1S 初始化 初始化 否 b-1=0? 是 图2.10 DSl820原理框图

每一片DSl820在其ROM中都存有其唯一的48位序列号,出厂前已写入片内ROM 中,主机在进入操作程序前必须逐一接入DS18B20用读ROM(33H)命令将该DS18B20的序列号读出并登录。当主机需要对众多在线DS18B20的某一个进行操作时,首先要发出匹配ROM命令(55H),紧接着主机提供64位序列(包括该DS18B20的48位序列号)。之后的操作就是针对该DS18B20的。而所谓跳过ROM命令即:MOV A,#0CCH。

图2.10中先有跳过ROM,即是启动所有DS18B20进行温度变换,之后通过匹配ROM 再逐一地读回每个DS18B20的温度数据。在DS18B20组成的测温系统中,主机在发出跳过ROM命令之后,再发出统一的温度转换启动码44H,就可以实现所有DS18B20的统一转换,再经过1s后,就可以用很少的时间去逐一读取。这种方式使其T值往往小于传统方式。(由于采取公用的放大电路和A/D转换器只能逐一转换)。显然通道数越多,这种省时效应就越明显。 DS1820使用中注意事项

DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:

(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写

时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。

(2)在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。

(3)连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。

(4)在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。

测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。

2.1.4 稳压电源7805 7805管脚图如图2.11所示:

图2.11

2.2各部分电路说明

2.2.1单片机控制部分

在本设计中,采用了AT89C51单片机作为本电路的核心电路的设计。AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易

失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 (1)振荡器特性:

XTAL1和XTAL2的反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

(2)单片机芯片的擦除:

整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

AT89C51的稳态逻辑可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

(3)单片机的时钟电路

图2.12片内振荡电路的时钟电路

AT89C1单片机内部的振荡电路是一个高增益反向放大器,引线XTAL1和XTAL2分别是放大器的输入端和输出端。单片机内部虽然有振荡电路,但要形成时钟,外部还需附加电路。AT89C51的时钟产生方式有两种:内部时钟电方式和外部时钟方式。由于外部时钟方式用于多片单片机组成的系统中,所以此处选用内部时钟方式。即利用其内部的振荡电路在XTAL1和XTAL2引线上外接定时元件,内部振荡电路产生自激振荡。最常用的是在 XTAL1和XTAL2之间接晶体振荡器与电路构成稳定的自激振荡器,如图2.13电路所示为单片机最常用的时钟振荡电路的接法,其中晶振可选用振荡频率为6MHz的石英晶体,电容器一般选择30PF左右。

(4)单片机的复位电路

本设计中AT89C51是采用上电自动复位和按键复位两种方式。最简单的复位电路如图2.13所示。上电瞬间,RC电路充电,RST引线端出现正脉冲,只要RST端保持10ms以上的高电平,就能使单片机有效地复位。其中R1和R2分别选择200Ω和1KΩ的电阻,电容器一般选择22μF。 (5)AT89C51的最小应用系统

AT89C51是片内有程序存储器的单片机,要构成最小应用系统时只要将单片机接上外部的晶体或时钟电路和复位电路即可,如图2.14所示。这样构成的最小系统简单可靠,其特点是没有外部扩展,有可供用户使用的大量的I∕O线。

图2.14 AT89C51单片机构成的最小系

图2.13 AT89C51的复位电

2.2.2传感器数据采集电路

传感器数据采集电路主要指DS18B20温度传感器与单片机的接口电路。DS18B20可以采用两种方式供电,一种是采用电源供电方式,如图2.15所示,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源供电方式,如图2.15所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,

联系合同范文客服:xxxxx#qq.com(#替换为@)