机械工程材料课后习题参考答案

发布时间 : 星期四 文章机械工程材料课后习题参考答案更新完毕开始阅读

3.划分冷加工和热加工的主要条件是什么?

答:主要是再结晶温度。在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现

象;反之为热加工,产生的加工硬化现象被再结晶所消除。 4.与冷加工比较,热加工给金属件带来的益处有哪些?

答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提高。 (2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能

提高。

(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿

着变形的方向细碎拉长,形成热压力加工“纤维组织”(流线),使纵向的强度、塑性和韧性显著大于横向。如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提高零件使用寿命。

5.为什么细晶粒钢强度高,塑性,韧性也好?

答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。因此,

金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。因此,金属的晶粒愈细强度愈高。同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产生和发展。因此,塑性,韧性也越好。

6.金属经冷塑性变形后,组织和性能发生什么变化?

答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;

②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提高,而塑性和韧性下降;③织构现象的产生,即随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,

转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金

属内部会形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定。 7.分析加工硬化对金属材料的强化作用?

答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加。这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提高了金属的强度。

8.已知金属钨、铁、铅、锡的熔点分别为3380℃、1538℃、327℃、232℃,试计算这些金属的最低再结晶温度,并分析钨和铁在1100℃下的加工、铅和锡在室温(20℃)下的加工各为何种加工?

答:T再=熔;钨T再=[*(3380+273)]-273=1188.2℃; 铁T再=[*(1538+273)]-273=451.4℃;

铅T再=[*(327+273)]-273=-33℃; 锡T再=[*(232+273)]-273=-71℃.由于钨T再为1188.2℃>1100℃,因此属于热加工;铁T再为451.4℃<1100℃,因此属于冷加工;铅T再为-33℃<20℃,属于冷加工;锡T再为-71<20℃,属于冷加工。 9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得以强化。试分析强化原因。

答:高速金属丸喷射到零件表面上,使工件表面层产生塑性变形,形成一定厚度的加工

硬化层,使齿面的强度、硬度升高。

第三章 合金的结构与二元状态图

1.解释下列名词:

合金,组元,相,相图;固溶体,金属间化合物,机械混合物;枝晶偏析,比重偏析;固溶强化,弥散强化。

答:合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在

一起所形成的具有金属特性的新物质,称为合金。

组元:组成合金的最基本的、独立的物质称为组元。

相:在金属或合金中,凡成分相同、结构相同并与其它部分有界面分开的均匀组成部

分,均称之为相。

相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图。

固溶体:合金的组元之间以不同的比例混合,混合后形成的固相的晶格结构与组成合

金的某一组元的相同,这种相称为固溶体。

金属间化合物:合金的组元间发生相互作用形成的一种具有金属性质的新相,称为金

属间化合物。它的晶体结构不同于任一组元,用分子式来表示其组成。

机械混合物:合金的组织由不同的相以不同的比例机械的混合在一起,称机械混合物。 枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶

体合金含高熔点组元较多,后结晶含低熔点组元较 多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析。

比重偏析:比重偏析是由组成相与溶液之间的密度差别所引起的。如果先共晶相与溶

液之间的密度差别较大,则在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下部分的化学成分不一致,产生比重偏析。

固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象称

为固溶强化。

弥散强化:合金中以固溶体为主再有适量的金属间化合物弥散分布,会提高合金的

强度、硬度及耐磨性,这种强化方式为弥散强化。

2.指出下列名词的主要区别: 1)置换固溶体与间隙固溶体;

答:置换固溶体:溶质原子代替溶剂晶格结点上的一部分原子而组成的固溶体称置换固

溶体。

间隙固溶体:溶质原子填充在溶剂晶格的间隙中形成的固溶体,即间隙固溶体。 2)相组成物与组织组成物; 相组成物:合金的基本组成相。

组织组成物:合金显微组织中的独立组成部分。 3.下列元素在α-Fe 中形成哪几种固溶体? Si、C、N、Cr、Mn

答:Si、Cr、Mn形成置换固溶体;C、N形成间隙固溶体。

4.试述固溶强化、加工强化和弥散强化的强化原理,并说明三者的区别.

答:固溶强化:溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而位错运动时受

到阻力增大。

弥散强化:金属化合物本身有很高的硬度,因此合金中以固溶体为基体再有适量的金

属间化合物均匀细小弥散分布时,会提高合金的强度、硬度及耐磨性。这种用金属间化合物来强化合金的方式为弥散强化。

加工强化:通过产生塑性变形来增大位错密度,从而增大位错运动阻力,引起塑性变

形抗力的增加,提高合金的强度和硬度。

区别:固溶强化和弥散强化都是利用合金的组成相来强化合金,固溶强化是通过产生

晶格畸变,使位错运动阻力增大来强化合金;弥散强化是利用金属化合物本身的高强度和硬度来强化合金;而加工强化是通过力的作用产生塑性变形,增大位错密度以增大位错运动阻力来强化合金;三者相比,通过固溶强化得到的强度、硬度最低,但塑性、韧性最好,加工强化得到的强度、硬度最高,但塑韧性最差,弥散强化介于两者之间。

5.固溶体和金属间化合物在结构和性能上有什么主要差别?

答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属间化合物的晶体结构不同

联系合同范文客服:xxxxx#qq.com(#替换为@)