匝间绝缘测试项目的释义及正确使用

发布时间 : 星期日 文章匝间绝缘测试项目的释义及正确使用更新完毕开始阅读

5.1 匝间电压分布

建立一个50匝的线圈分布参数仿真模型,如图4所示。根据前面的理论分析得知,电压分布不均匀大多表现在前几匝,故只建立前4匝的分布参数模型,后面46匝用集中参数等效。匝间互感作用用耦合线圈实现,输入信号(Signal)由另一文件生成,可以提供单脉冲输入和PWM脉冲输入。图中检测信号为各匝电压,最后合成在一个窗口输出。

对单个脉冲输入进行分析,结果发现:

(1) 脉冲输入电压上升时间越短,各匝的电压降越大,电压分布越不均匀。其原因可从上一节的时域分析得到,上升时间越短,波头越陡,绕组内电压振荡越厉害,电压分布就越不均匀。

(2) 各匝自感越大,电压分布越不均匀,电压振荡越厉害;而匝间互感越大,对电压分布反而有利。从理论上分析,自感对电流有抑制作用,所以自感越大,电流越难向后传播,造成前匝的压降越厉害;由于各匝电流方向相同,互感作用将一部分电流耦合到后面各匝上,加速了后面各匝的电压建立,从而有利于电压的均匀分布。

(3) 第一匝对地电容C1对电压分布作用明显,C1越大第一匝的电压降越大;由于匝间电容相对各匝对地电容而言较小,对电压分布影响不大,如果匝间电容相对较大,则有利于电压的均匀分布。这是因为匝间电容的存在可将前一匝的电压耦合到后一匝上,而不必等到电感上流过电流,所以匝间电容越大,电压分布越均匀。

图5给出不同电压上升时间下匝间电压分布的仿真波形。图中波形从前往后依次为第1,2,3,4匝的电压降,最后46匝压降由于电压值超出刻度范围而未给出,tr为脉冲前沿的上升时间。当输入PWM脉冲

序列时,电压分布随各参数变化特性与单个脉冲输入时一致,但电压分布的幅值不尽相同,因为高频重复的脉冲电压输入使得绕组内的电压发生了叠加或者消除。

5.2 线圈间电压分布

绕组内电压分布不均匀不但体现在线圈内(即匝间),而且体现在线圈间,甚至后者的不均匀程度更明显。本文对图4所示单线圈模型进行封装,建立4个线圈串联的绕组模型,通过对各线圈电压与电流的测试结果进行分析得知:线圈间的电压分布极不均匀,第一个线圈(靠近接线端)上的压降最大,以后依次减小。这是因为加在第一个线圈上的电压上升沿很陡,线圈内的对地分布电容作用使得该线圈上承受很大的压降。当脉冲波经过第一个线圈到达下一个线圈时,由于第一个线圈的延迟作用,此时的脉冲电压上升沿趋于缓和,因此在以后几个线圈上的压降也就比较均匀。

在逆变器与电机间未加长电缆连接时,脉冲电压上升时间变化对线圈间的电压分布没多大影响;上升时间变化,只改变第一个线圈的电流,对后面几个线圈的电流没有影响;上升时间越短,第一个线圈上的电流越大,振荡越厉害。图6给出了不同上升时间下各线圈的压降和电流,其中图a)和b)为电压波形,图c)和d)为电流波形。

当逆变器与电机间用长电缆连接时,电机端形成一个振荡的过电压[10],这个高的电压加在绕组上势必增大绕组内各线圈的电压应力。仿真发现,虽然第一个线圈上的电压明显比未用电缆连接时高得多,但是后面几个线圈的电压并未有明显的升高。电机端电压的振荡作用使得绕组内第一个线圈的电压发生振荡,且振荡频率与电缆长度有关。电缆越长,线圈上电压振荡周期越长。事实上,这和电机端过电压的振荡规律一致。电压在第一个线圈上发生振荡,进一步说明在长电缆传输时电机绕组内的电压分布更加不均匀,从而加剧了绕组绝缘的过早失效。长电缆传输时电机线圈间电压和电流波形如图7所示。

6 结束语

输入脉冲电压上升率太大是电机绕组电压分布不均的根本原因,绕组内的分布参数作用使得脉冲电压更多地降落在线端线圈上,尤其是线端线圈的头几匝承受的电压应力最大。绕组分布参数中的自感和对地电容越大,电压分布越不均匀;与此相反,相对较大的匝间互感和互容则有利于电压的均匀分布。利用有限元分析软件对电机定子槽内电磁场进行分析,计算得到槽内各匝的分布电感和分布电容值。结果表明,各匝分布参数不仅与自身材料属性有关,还与各匝在槽内的位置有关。对于电感而言,槽底的各匝自感比上面层的各匝自感相对大一些;而靠近槽壁的各匝电容比位于中心的各匝电容大得多;匝间互感和互容与两匝的相对距离有关。

联系合同范文客服:xxxxx#qq.com(#替换为@)