神经生物学复习题答案-2012

发布时间 : 星期二 文章神经生物学复习题答案-2012更新完毕开始阅读

兴奋性:具有接受刺激产生兴奋即动作电位的能力。 兴奋:神经元因刺激而产生动作电位的反应。

引起兴奋的主要条件:组织的机能状态;刺激的特征(强度、时间、强度-时间变化率)。

衡量兴奋性的指标:阈强度或阈值 (threshold):当固定刺激持续时间和强度-时间变化率不变时,刚能引起组织兴奋的最小刺激强度。阈强度高,兴奋性低;阈强度低,兴奋性高。

影响神经元兴奋性的因素:1)、静息电位和阈电位水平:由于神经元产生兴奋的条件就是使膜电位从静息电位水平去极化到阈电位水平,所以两者之间的差值越大,兴奋性越低;差值越小,兴奋性越高;2)、Na+通道的功能状态:神经元的锋电位上升支一般都是由电压门控Na+通道介导的,当Na+通道处于失活状态,则不易或不能产生兴奋,故兴奋性降低,失活Na+通道与兴奋性成反比关系,失活的比例越高,兴奋性越低;3)、Ca2+的影响:细胞外液的Ca2+浓度可以明显影响神经元的兴奋性,当[Ca+]o升高时,可降低兴奋性,反之相反;4)、动作电位过程中神经元兴奋性的变化:存在绝对不应期、相对不应期、超常期、低常期。

第四章 神经电信号的传递

一、名词解释:

1、化学突触传递:就是经典突触传递,即突触前神经元产生的兴奋性电信号(动作电位)诱发突触前膜释放神经递质,跨过突出间隙而作用于突触后膜,进而改变突触后神经元的电活动又称电—化学—电传递。

2、兴奋性突触后电位(EPSP):依据突触后电位的变化方向及对突触后神经元的影响,引起突触后膜去极化的反应称之为兴奋性突触后电位。

3、抑制性突触后电位(IPSP):依据突触后电位的变化方向及对突触后神经元的影响,引起突触后膜超极化的反应称之为抑制性突触后电位。

4、突触整合:中枢的突触后神经元是兴奋还是抑制,能否产生动作电位,取决于这些突触电位在性质、空间、时间上的相互作用,这一过程称为突触整合。

5、突触可塑性:是指在某种条件下突触传递效能的持续性变化, 这种变化持续的时间可长可短。突触会发生适应 性的变化,包括结构上的可变性和功能上的可修饰性,即结构和功能的可塑性。 二、问答题:

1. 简述神经电信号传递及其传递方式。

神经元所产生的电信号在神经元间或在神经元与效应器等细胞间的传播,称为传

递,即指动作电位在细胞之间的传播。

1)、按照神经细胞间的结构和相对关系,分为突触传递和非突触性传递。①、突出传递是指通过神经细胞间的突触结构完成的信号传递,细胞间具有紧密的解剖学关系。依据突触结构和传递机制的不同又分为化学突触、电突触。②、非突触传递是指细胞间不存在紧密的解剖学结构,没有明确的细胞间对应关系,前一细胞通过释放神经递质,可作用于较远和较广的范围,广义地说,神经内分泌细胞所释放的神经激素,也属于这种信号传递方式。

2)、依据神经电信号传递对接收信号神经元的作用分为兴奋性传递、抑制性传递。①、兴奋性传递:所传递的神经电信号是接受信号的神经元兴奋性提高,通常是产生去极化反应;②、抑制性传递:神经电信号传递的结果,使接收信号的神经元兴奋性降低,常见的是产生超极化反应。

2. 试述化学突触传递的基本过程和原理。

化学突触传递:就是经典突触传递,即突触前神经元产生的兴奋性电信号(动作电位)诱发突触前膜释放神经递质,跨过突出间隙而作用于突触后膜,进而改变突触后神经元的电活动又称电—化学—电传递。

基本过程:神经冲动→突触小体→突触前膜去极化→Ca2+通道开放→Ca2+内流→突触小泡与前膜融合→递质释放→与突触后膜受体结合→突触后膜离子通道通透性改变→突触后神经元膜电位改变(突触后电位,EPSP或IPSP)。

原理:在化学突触传递过程中,递质的释放是关键性因素,是出胞(胞吐)过程。1)、神经递质的释放是通过突触囊泡的循环机制完成的,分为5个时相:入坞或锚靠、启动或激活、融合或出胞、入胞、再生。2)、突触囊泡借助一系列囊泡膜蛋白的相互作用完成入坞、启动和融合过程,称作SNARE假说。3)、神经递质的释放是Ca+依赖性的。神经递质的释放,需要胞外Ca+的内流,而且内流的Ca+量又与递质的释放量成正比关系,内流的Ca+量与突触前膜动作电位的幅度成正比关系。4)、神经递质的释放为量子式释放,神经递质贮存在末梢的囊泡内。 3. 比较EPSP和IPSP的产生及其特征。

兴奋性突触后电位(EPSP):依据突触后电位的变化方向及对突触后神经元的影响,引起突触后膜去极化的反应称之为兴奋性突触后电位。

产生机制:神经冲动→突触小体→突触前膜去极化→Ca2+通道开放→Ca2+内流→突触小泡与前膜融合→释放兴奋性神经递质→递质与突触后膜受体结合→突触后膜对Na+,K+离子(主要是Na+ )通透性升高→突触后产生EPSP →突触后神经元轴突始段

爆发动作电位→神经元兴奋。

特征:引起突触后膜去极化的反应,其大小决定于传入神经刺激强度的大小,即刺激强度越大,则参与活动的突触数越多。

抑制性突触后电位(IPSP):依据突触后电位的变化方向及对突触后神经元的影响,引起突触后膜超极化的反应称之为抑制性突触后电位。

产生机制:神经冲动→突触小体→突触前膜去极化→Ca2+通道开放→Ca2+内流→突触小泡与前膜融合→释放抑制性神经递质→递质与突触后膜受体结合→突触后膜对Cl-通透性升高→突触后产生IPSP →突触后神经元不易爆发动作电位→神经元抑制。

特征:引起突触后膜超极化的反应,突触前释放的是抑制性神经递质,其离子通道开放后以Cl-内流为主。

4. 简述突触后电位的整合。 突触整合:中枢的突触后神经元是兴奋还是抑制,能否产生动作电位,取决于这些突触电位在性质、空间、时间上的相互作用,这一过程称为突触整合。

EPSP和IPSP的相互作用有两种:线性方式、非线性方式。1)、线性方式:IPSP的作用在于其超极化,降低了神经元的兴奋性,导致了EPSP不能引发动作电位而归于传递失败。2)、非线性方式:IPSP的作用在于其短路分流,此时产生EPSP的膜电流由于IPSP期间的通道开放被分流,进而EPSP被抑制。

影响突触整合的因素:1)、空间常数(λ): 决定去极化电流在被动传播过程降低的程度, 空间常数越大,空间整合效果越大;2)、时间常数(τ): 决定突触电位的时程,主要影响时间总和;时间常数越大,时间整合效果越大,以致于达到阈电位水平爆发动作电位;3)、树突的性质和突触的位置,影响突触整合的重要因素4)、轴突始段,突触整合的关键部位。

5. 简述突触传递的调制方式。 调制:可改变突触传递效能。分为突触后机制(调制发生在突触后膜)、突触前机制(通过改变突触前递质的释放来影响突触的效率)、突触可塑性(是指在某种条件下突触传递效能的持续性变化, 这种变化持续的时间可长可短。突触会发生适应 性的变化,包括结构上的可变性和功能上的可修饰性,即结构和功能的可塑性),另外,各种内源性神经活性物质或药物,也可通过突触前或突触后机制,影响突触传递的效果;通过影响突触间隙中地址的作用也可以改变突触传递的作用。

6. 简述突触可塑性及其产生机制。 突触可塑性:是指在某种条件下突触传递效能的持续性变化, 这种变化持续的

时间可长可短。突触会发生适应 性的变化,包括结构上的可变性和功能上的可修饰性,即结构和功能的可塑性。

类型:1)、短时程的改变:①、突触易化:衡量标准由突触后电位的大小来衡量;特点:效应消失快,只能维持数十到数百个ms;②、突触强化或强直后强化:与突触易化的区别:见于所有突触;出现于较长时间的连续刺激之后;可以延续数秒或更长时间;在此期间来到的对突触前末梢的刺激将引起较大的突触后反应。2)、长时程的改变:给予重复的强直刺激可产生持续时间更长的突触效能改变,分为①、长时程强化(LTP):突触后电位增大;②、长时程压抑(LTD):突触后电位减小。

产生的机制:大多取决于突触前神经末梢或(和)突触后胞内Ca+浓度的变化。突触前神经末梢内Ca+浓度的变化影响了递质的释放,突触后胞内的Ca+浓度的变化则影响了神经元的反应特性。胞内Ca+浓度的变化涉及胞内Ca+平衡的若干方面,包括胞外Ca+的进出和胞内钙库的动员与储存等机制。 7. 简述突触前抑制的产生机制及作用。

突触前抑制:抑制是改变了突触前膜的活动使递质释放减少所致,称为突触前抑制。也可将作用于突触前膜导致递质释放减少而抑制兴奋传递的现象,均称为突触前抑制。

产生机制:因去极化而冲动减弱,递质释放量减少,不易甚至不能引起突触后N元兴奋。B纤维传入经多突触接替后在末梢释放递质→A纤维末梢产生去极化而使静息电位绝对值减小→A纤维末梢兴奋时动作电位幅度变小→释放的递质减少→运动神经元的EPSP减小。

作用:突触前抑制在中枢神经系统内广泛存在,尤其多见于感觉传入途径中对调节感觉传入活动有重要的作用。可发生在各类感受器传入活动之间,也可发生在同类感受器的不同感受野活动之间。

第五章 神经递质和神经肽

一、名词解释:

1、神经递质:由神经末梢(突触前成分)所释放的特殊化学物质,该物质能跨过突触间隙作用于神经元或效应器(突触后成分)膜上的特异性受体,完成信息传递功能。

2、神经调质:神经元产生的另一类化学物质,它的功能是调节信息传递的效率,影响神经递质的效应。

3、戴尔原则:一个神经元中只产生并释放一种递质,其全部神经末梢均释放同一种递质。

联系合同范文客服:xxxxx#qq.com(#替换为@)