焦化厂鼓冷工段毕业设计[1] - 图文

发布时间 : 星期一 文章焦化厂鼓冷工段毕业设计[1] - 图文更新完毕开始阅读

毕业设计说明书

在初冷器前几个流道中,因冷凝焦油量多,温度也较高,萘多溶于煤焦油中;在其后通路中,因冷凝煤焦油量少,温度低,萘晶体将沉积在管壁上,使传热系数降低,煤气流通阻力亦增大。在煤气上升通路上。冷凝物还会因接触热煤气而又部分蒸发,因而增加了煤气中萘的含量。上述问题都是立管式初冷器的缺点。为克服这些缺点,可在初冷器后几个煤气流通内,用含萘较低的混合煤焦油进行喷洒,可解决萘的沉积堵塞问题,使之低于集合温度下萘在煤气中的饱和浓度。 3.1.2 横管式间接初冷器

如图4所示,横管式初冷器具有直立长方形的外壳,冷却水管与水平面成3度角横向配置。管板外侧管箱与冷却水管连通,构成冷却水通道,可分两段和三段供水。两段供水是供低温水和循环水,三段供水则供低温水,循环水和采暖水。煤气自上而下通过初冷器。冷却水由每段下部进入,低温水供入最下段,以提高传热温差,降低煤气出口温度:在冷却器壳程每段上部,设置喷洒装置,连续喷洒含煤焦油的氨水,以清洗管外部的煤焦油和萘,同时还可以从煤气中吸收一部分萘。

在横管初冷器中,煤气和冷凝液由上往下同时流动,较为合理。由于管壁上的萘可被冷凝液冲洗和溶解下来,同时与冷凝液上部喷洒氨水,自中部喷煤焦油,能更好的冲洗掉沉积的萘,从而更有效的提高了传热系数。此外,还可以防止冷凝液再度蒸发。

在煤气初冷器内90%以上的冷却能力用于水汽的冷凝,从结构上看,横管式初冷器更有利于蒸汽的冷凝。

横管初冷器用φ54mm×3mm的钢管,管径细而管束小,因而水的流速可达0.5-0.7m/s。又由于冷却水管在冷却器断面上水平密集布设,使与之成错流的煤气产生强烈湍动,从而提高了传热系数,并能实现均匀的冷却,煤气可冷却到出口温度只比进口水温高2℃。横管初冷器虽然具有以上优点,但水管结垢较难清

10

毕业设计说明书

扫,要求使用水质好的或经过处理含萘低的冷却水。

横管初冷器与竖管初冷器两者相比,横管初冷器有更多优点,如对煤气的冷却,净化效果好,节省钢材,造价低,冷却水用量少,生产稳定,操作方便,结构紧凑,占地面积省。因此,近年来,新建焦化厂广泛采用横管初冷器,以很少采用竖管初冷器了。见于以上两种初冷器的对比我选用横管式间接初冷器。

3.2 鼓风机结构、特点及选型

焦化厂焦炉煤气鼓风机有离心式和容积式两种。离心式用于大型焦炉;容积式常用的是罗茨鼓风机,用于中型和小型焦炉。在此设计中,我选择了离心式鼓风机。下面介绍的是此两种鼓风机的构造及优缺点。 3.2.1 离心式鼓风机

离心式鼓风机又称涡轮式或透平式鼓风机,由电动机或气轮机驱动。其构造如图5所示:

离心式鼓风机由导叶机,外壳和安装在轴上的两个工作叶轮组成。煤气由吸入口进入高速旋转的第一工作叶轮,再离心的作用下,增加了动能并被甩向叶轮外边的环行空隙,于是在叶轮中心边形成负压,煤气即被不断吸入。由叶轮甩出的煤气速度很高,当进入环形空隙后速度减小,其部分动能变成静压能,并沿导叶轮通道进入第二叶轮,产生与第一叶轮及环隙相同的作用,煤气的进静压能再次得到提高,经出口连接送入管路中。煤气的压力是在转子的各个叶轮作用下,并经过能量转换而得到提高的。显然叶轮的转速越高,煤气的密度越大,作用于

11

毕业设计说明书

煤气的离心力就越大,则出口煤气的压力就越高。大型离心鼓风机转速在5000r/min以上,电动机驱动时,需设增速器以提高转速。

离心式鼓风机按进口煤气流量的大小有150m^3/min, 300m^3/min, 750m^3/min, 900m^3/min,和1200m^3/min等各种规格,产生的总压头为29.5~34.3kPa。 3.2.2 罗茨式鼓风机

罗茨式鼓风机是利用转子转动时的容积变化来吸入和排出煤气,用电动机驱动,其构造见图。罗茨式鼓风机有一铸铁外壳,壳内装有两个“8”字形的用铸铁或铸钢制成的空心转子,并将汽缸分成两个工作室。两个转子装在两个互相并行的轴上,在这两个轴上又各装有一个互相咬合,大小相同的齿轮,当电动机经由皮带轮带动主轴转子时,主轴

上的齿轮又带动了从动轴上的齿轮,所以两个转子做相对反向转动,此时一个工作室吸入气体,由转子推入另一个工作室而将气体压出。每个转子与机壳内壁及与另一个转子表面均需紧密配合,其间隙一般为0.25-0.40mm。间隙过大即有一定数量的气体由压出侧漏到吸入侧,有时因漏泄量大而使机身发热:罗茨式鼓风机因转子的中心距及转子长度的不同,其输气能力可以在很大范围内变动:在中国中小型焦化厂应用的罗茨式鼓风机有多种规格,其生产能力28-300m^3/min ,所生成的额定压头为19.61-34.32kPa。

罗茨式鼓风机具有结构简单,制造容易,体积小,且在转速一定时,如压头稍有变化,其输气量可保持不变,即输气量随着风压变化几乎保持不变。可以获得较高的压头。这都是优点。但在使用日久后,间隙因磨损而增大,其效率降低,次种鼓风机必须用循环管调节煤气量,在压出管路上需安装安全筏,以保证安全运转。此外,罗茨式鼓风机的噪声较大。

3.3 电捕焦油器

焦油雾是在煤气冷却过程中形成的,它以内充煤气的焦油气泡状态或极细小

12

毕业设计说明书

的焦油滴存在于煤气中。焦油雾的清除对化产回收工段的设备及操作极为重要。清除焦油雾的方法很多,但从焦油雾滴的大小及所要求的净化程度来看,采用电捕焦油器最为经济可靠,效率可达98%以上。 3.3.1电捕焦油器的工作原理

根据板状电容的物理原理,如在两金属板间维持很强的电场,使含有尘灰或雾滴的气体通过其间,气体分子发生电离,生成带有正电荷或负电荷的离子,于是正离子向阴极移动,负离子想阳极移动。当电位差很高时具有很大速度(超过临界速度)和动能的离子的电子与中性分子碰撞而产生新的离子(即发生电离),使两极间大量气体分子均发生电离作用。离子与雾滴的质点相遇而附于其上,使质点带有电荷,即可被电极吸引而从气体中除去,但金属平板形成的是均匀电场,当电压增大到超过绝缘电阻时,两极之间便会产生火花放电,这不仅会导致电能损失,且能破坏净化操作。为了避免火花放电或发生电弧,应采用不均匀电场。

在不均匀电场中,当两极间电位差增高时,电流强度并不发生急剧的变化。这是因在导线附近的电场强度很大,导线附近的离子能以较大的速度运动,使被碰撞的煤气分子离子化而离导线中心较远处,电场强度小,离子的速度和动能不能使相遇的分子离子化,顺而绝缘电阻只在导线附近电场强度最大处发生击穿,即形成局部电离放电现象,这种现象称为电晕现象。

由于在电晕区内发生急剧的碰撞电离,形成大量正负离子。负离子的速度比正离子大,所以电晕极常取为负极,圆管或环形金属则取为正极,因而速度大的负离子即向管壁或金属板移动,正离子则移向电晕极。在电晕区内存在两种离子,而电晕区外只有负离子,因而在电捕焦油器的大部分空间内,煤焦油雾滴只能成为带有包电荷的质点而向管壁或板壁移动。由于圆管或金属板是接地的,荷电煤焦油质点到达管壁或板壁时,既放电而沉淀于板壁上,故正极也称为沉淀极。

由于存在正离子的电晕区很小,且电晕区内正离子和负离子有中和作用,所以电晕极上沉淀的焦油量很少绝大部分焦油雾均在沉淀极沉淀下来。煤气离子经在两极放电后,重新转变成煤气分子,从电捕焦油器中逸出。 3.3.2 电捕焦油器的构造

在大型焦化厂中均采用管式电捕焦油器,其构造如图7所示其外壳为圆柱型,底部为凹型或锥型并带有蒸汽夹套,沉淀管径为250mm,长350mm,在每根沉淀管的中心悬挂着电晕极导线,由上部框架及下不框架拉紧;并保持偏心度

13

联系合同范文客服:xxxxx#qq.com(#替换为@)