生物化学(第三版)课后习题详细解答

发布时间 : 星期日 文章生物化学(第三版)课后习题详细解答更新完毕开始阅读

第九章 酶促反应动力学

提要

酶促反应动力学是研究酶促反应的速率以及影响此速率各种因素的科学。它是以化学动力学为基础讨论底物浓度、抑制剂、pH、温度及激活剂等因素对酶反应速率的影响。化学动力学中在研究化学反应速率与反应无浓度的关系时,常分为一级反应、二级反应及零级反应。研究证明,酶催化过正的第一步是生成酶-底物中间产物,Michaelis-Menten该呢举中间产物学说的理论推导出酶反应动力学方程式,即Km、Vmax、kcat、kcat/Km。Km是酶的一个特征常数,以浓度为单位,Km有多种用途,通过直线作图法可以得到Km及Vmax。Kcat称为催化常数,又叫做转换数(TN值),它的

-1

单位为s,kcat值越大,表示酶的催化速率越高。kcat/Km常用来比较酶催化效率的参数。酶促反应除了单底物反应外,最常见的为双底物反应,按其动力学机制分为序列反应和乒乓反应,用动力学直线作图法可以区分。

酶促反应速率常受抑制剂影响,根据抑制剂与酶的作用方式及抑制作用是否可逆,将抑制作用分为可逆抑制作用及不可逆抑制作用。根据可逆抑制剂与底物的关系分为竞争性抑制、非竞争性抑制及反竞争性抑制3类,可以分别推导出抑制作用的动力学方程。竞争性抑制可以通过增加底物浓度而解除,其动力学常数Kˊm变大,Vmax不变;非竞争性抑制Km不变,Vˊmax变小;反竞争性抑制Kˊm及Vˊmax均变小。通过动力学作图可以区分这3种类型的可逆抑制作用。可逆抑制剂中最重要的是竞争性抑制,过度态底物类似物为强有力的竞争性抑制剂。不可逆抑制剂中,最有意义的为专一性Ks型及kcat型不可逆抑制剂。研究酶的抑制作用是研究酶的结构与功能、酶的催化机制、阐明代谢途径以及设计新药物的重要手段。

温度、pH及激活剂都会对酶促反应速率产生重要影响,酶反应有最适温度及最适pH,要选择合适的激活剂。在研究酶促反应速率及测定酶的活力时,都应选择酶的最适反应条件。

习题

1.当一酶促反应进行的速率为Vmax的80%时,在Km和[S]之间有何关系?[Km=0.25[S]] 解:根据米氏方程:V=Vmax[S]/(Km+[S])得:

0.8Vmax=Vmax[S]/(Km+[S]) Km=0.25[S]

-2

2.过氧化氢酶的Km值为2.5×10 mol/L,当底物过氧化氢浓度为100mol/L时,求在此浓度下,过氧化氢酶被底物所饱和的百分数。[80%]

-3-2-3

解:fES=[S]/(Km+[S])=100×10/(2.5×10+100×10)=80%

3.由酶反应S→P测得如下数据:

[S]/molL 6.25×10

-5

7.50×10

-4

1.00×10

-3

1.00×10

-2

1.00×10

-5

-1

-1

-6-1

V/nmolLmin

15.0 56.25 60.0 74.9 75.0

-1-1

(1) 计算Km及Vmax。[Km:2.5×10,Vmax:75 nmolLmin]

-5-1-1

(2) 当[S]= 5×10 mol/L时,酶催化反应的速率是多少?[50.0 nmolLmin]

-5-1-1

(3) 若[S]= 5×10 mol/L时,酶的浓度增加一倍,此时V是多少?[100 nmolLmin] (4) 表中的V是根据保温10min产物生成量计算出来的,证明V是真正的初速率。 解:(1)由米氏方程得:

21

15=Vmax·6.25×10/ (Km+6.25×10)??① 60=Vmax·10/(Km+10)??②

-5-1-1

由①、②得:Km=2.5×10,Vmax=75 nmolLmin

-5-5-5-1-1

(2)V=75×5×10/(2.5×10+5×10)=50.0 nmolLmin

-1-1

(3)50×2=100 nmolLmin (4)带如米氏方程可验证。

-5-1-1-1-4-1

5.某酶的Km为4.7×10 molL,Vmax为22μmolL min,底物浓度为2×10 molL。试计算:(1)

-4-1

竞争性抑制剂,(2)非竞争性抑制剂,(3)反竞争性抑制剂的浓度均为5×10 molL时的酶催化反

-4-1

映速率?这3中情况的Ki值都是3×10 molL,(4)上述3种情况下,抑制百分数是多少?[(1)

-1-1-1-1-1-1

13.54μmolL min,24%;(2)6.68μmolL min,62.5%;(3)7.57μmolL min,57.5%] 解:(1)竞争性抑制剂的米氏方程为:V=Vmax[S]/(Km(1+[I]/Ki)+[S])

-1-1

代入数据得:V=13.54μmolL min

i%=(1-a)×100%=(1-Vi/Vo)×100%=24%

(2)非竞争性抑制剂的米氏方程为:V=Vmax[S]/((Km+[S])(1+[I]/Ki))

-1-1

代入数据得:V=6.68μmolL min

i%=(1-a)×100%=(1-Vi/Vo)×100%=62.5%

(3)反竞争性抑制剂的米氏方程:V=Vmax[S]/(Km+[S](1+[I]/Ki))

-1-1

代入数据得:V=7.57μmolL min

i%=(1-a)×100%=(1-Vi/Vo)×100%=57.5%

6.今制得酶浓度相同、底物浓度不同的几个反应混合液,并测得反应初速率,数据见下表。请利用“Eadie-Hofstee”方程式,用图解法求出Km值及Vmax值。这种作图法与Lineweaver-Burk作图法

-1-1-5-1

比较有何优点?[Vmax=160μmolL min,Km=8.0×10 molL]

[S]/molL 4.0×10

-4

2.0×10

-4

1.0×10

-5

5.0×10

-5

4.0×10

-5

2.5×10

-5

2.0×10

-4-1

-6-6-4-4

V/μmolLmin

130 110 89 62 53 38 32

-1-1

解:将米氏方程改写成:V=Vmax-Km·V/[S],以V-V/[S]作图,得一直线,其纵截距为Vmax,斜率为

-1-1-5-1

-Km,由图得Vmax=160μmolLmin,Km=8.0×10 molL

优点:实验点相对集中于直线上,Km和Vmax测定值较准确。

7.对一个遵从米氏方程的酶来说,当底物浓度[S]=Km,竞争抑制剂浓度[I]=Ki时,反应的初速率是多少?[V=1/3Vmax]

解:根据米氏方程可得:V=Vmax[S]/ (Km(1+[I]/Ki)+[S]),其中[S]=Km,[I]=Ki

V= VmaxKm/ (Km(1+Ki/Ki)+Km)=1/3 Vmax

8.用下列表中数据确定此酶促反应:(1)无抑制剂和有抑制剂的Vmax和Km值。[无抑制剂时Km=1.1

-5-1-1-1-5-1-1-1

×10 molL,Vmax=50μmolLmin,有抑制剂时:Km=3.1×10 molL,Vmax=50μmolLmin](2)

-3-1

EI复合物的解理常数Ki。[Ki= 1.10×10molL]

22

[S]/molL 无抑制剂 0.3×10 -50.5×10 -51.0×10 -53.0×10 -59.0×10 -5-1V/μmolLmin 有抑制剂(2.0×10 molL) 4.1 6.4 11.5 22.6 33.8 -5-1-3-1-1-110.4 14.5 22.5 33.8 40.5 解:(1)无抑制剂时:V=Vmax[S]/(Km+[S]),将表中数据代入此式可得Km=1.1×10 molL,Vmax=45.1

-1-1

μmolLmin

对表中数据用V对[S]作图,求Km值,可判断有抑制剂时,Km值明显增大,故该抑制剂应为竞争性抑制剂。据V=Vmax[S]/(Km(1+[I]/Ki)+[S])以及Vmax不变的性质可得,此时Vmax=45.1μ

-1-1-5-1-3-1

molLmin,Km=3.1×10 molL,Ki= 1.10×10molL

9.同上。

-3

10.从速率对底物浓度作图9-31中,求出下列参数(反应混合物中酶量为10μmol)。(1)Km;(2)

-4-1-1-15-1-1

Vmax;(3)kcat/Km;(4)转换数。[Km:5×10molL;Vmax:6μmolLmin;kcat/Km: 2×10 molLs;

-1

转换数:100s]

解:Vmax=kcat·[Et]=k3·[E]=k3·[ES]

-1-1

11.下面的叙述哪一个是正确的?胰凝乳蛋白酶的转换数100s,DNA聚合酶是15s。 (1) 胰凝乳蛋白酶结合第五比DNA聚合酶有更高的亲和性。 (2) 胰凝乳蛋白酶反映速率比DNA聚合酶反映速率更大。

(3) 在特别的酶浓度和饱和底物水平下胰凝乳蛋白酶反应速率比DNA聚合酶在相同条件下更低。 (4) 在饱和底物水平下,两种酶的反应速率,假若DNA聚合酶反应速率的6.7倍则与胰凝乳蛋白

酶相等。

-6-1-1

12.今有一酶反应,它符合Michaelis-Menten动力学,其Km为1×10molL。底物浓度为0.1 molL

-1-1-2-1-3-1-6-1

时,反应初速度为0.1μmolLmin。试问:底物浓度分别为10molL、10molL和10molL时的

-7-1-1-8-1-1

反应初速率是多少?[1×10 molLmin,5×10 molLmin]

-6-1-1-1-1

解:∵Km=1×10molL《[S]=0.1molL ∴V=Vmax=0.1μmolLmin

将题中数据代入米氏方程:V=Vmax[S]/(Km+[S])得:设[S]=xKm V=Vmax·xKm/((x+1)Km)=x/(x+1)·Vmax=1/(1+1/x)·Vmax V1=0.1 V2=0.09998 V3=1/2·Vmax=0.05

-4-1

13.假设2×10 molL的[I]抑制了一个酶催化反应的75%,计算这个非竞争性抑制剂的Ki?[6.66

-5-1

×10 molL]

解:i%=(1-a)×100%=(1-Vi/Vo)×100%=75% Vi/Vo=1/4 → Vo=4Vi??①

再根据无抑制剂时的米氏方程:Vo=Vmax[S]/(Km+[S])??②

加入非竞争性抑制剂时:V=Vˊmax[S]/((Km+[S])(1+[I]/Ki))??③,此时Vmax变小,Km不变。

-4

由①②③得:Ki=2×10/(4·Vˊmax/ Vmax-1) Vˊmax = Vmax

-5-1

Ki=6.66×10 molL

-4-1-5-3

14.如果Km为2.9×10 molL 。Ki为2×10mol/L。在底物浓度为1.5×10mol/L时,要得到75%

23

的抑制,需竞争性抑制剂的浓度是多少?[3.7×10mol/L]

解:i%=(1-a)×100%=(1-Vi/Vo)×100%=75% Vi/Vo=1/4 → Vo=4Vi??①

再根据无抑制剂时的米氏方程:Vo=Vmax[S]/(Km+[S])??② 加入竞争性抑制剂时:V=Vˊmax[S]/(Kˊm(1+[I]/Ki) +[S])??③,此时Vmax变小,Km不变。 由①②③得:[I]=4KmKi/Kˊm-Ki+3[S][Ki]/Kˊm

-4

加入抑制剂时,Km=Kˊm ∴[I]= 3.7×10mol/L

15.举例说明什么是Ks型和kcat型不可逆抑制剂。什么是过度态底物类似物?它属于何种类型抑制剂?

答:Ks型抑制剂根据底物的化学结构设计,具有底物类似的结构,可以和相应的酶结合,同时还代有一个活泼的化学基团,能与酶分子中的必需基团反应进行化学修饰,从而抑制酶。因其专一性取决于抑制剂与活性部位必需基团在反应前形成非共价络合物的解离常数以及非活性部位同类基团形成非共价络合物的解离常数之比,即Ks比值,故这类抑制剂称不可逆Ks抑制剂。例如:胰蛋白酶要求催化的底物具有一个带正电荷的侧链,如Lys、Arg侧链。对甲苯磺酰-L-赖氨酰氯甲酮(TLCK)和胰蛋白酶活性部位必需集团His57共价结合,引起不可逆失活。

Kcat型不可逆抑制剂具有天然底物的类似结构,其本身也是酶的底物,能与酶结合发生类似于底物的变化。但抑制剂还有一个潜伏的反应基团,当酶对它进行催化反应时,这个潜伏反映基团被暴露或活化,并作用于酶活性部位的必需基团或酶的辅基,使酶不可逆失活,其专一性极高。例如β-卤代-D-Ala是细菌中丙氨酸消旋酶(AR)的不可逆抑制剂,属于磷酸吡哆醛类的自杀性底物。

过渡态底物类似物是化学结构类似过渡态底物(底物和酶结合成中间复合物后被活化的过渡形式)的抑制剂,属于竞争性抑制剂,如嘌呤腺苷水合形成是小牛脱氨酶反应过渡类似物。

24

-4

联系合同范文客服:xxxxx#qq.com(#替换为@)