《金属学与热处理》(第二版)课后习题答案[1] - 图文

发布时间 : 星期三 文章《金属学与热处理》(第二版)课后习题答案[1] - 图文更新完毕开始阅读

度有所降低,但降幅不大。所以力学性能只有很少恢复。 密度有所降低,但降幅不大。所以力学性能只有很少恢复。高温回复的主要机制为多边化。 多边化 由于同号刃型位错的塞积而导致晶体点阵弯曲, 由于同号刃型位错塞积而导致晶体点阵弯曲,在退火过程中 通过刃型位错的攀移和滑移, 通过刃型位错的攀移和滑移,使同号刃型位错沿垂直于滑移面的方向排列成小角度的亚晶界。此过程称为多边(形)化。 多晶体金属塑性变形时, 多晶体金属塑性变形时, 金属塑性变形时滑移通常是在许多互相交 截的滑移面上进行, 截的滑移面上进行,产生由缠结位错构成的胞状组织。因此,多边化后不仅 所形成的亚晶粒小得多, 而且许多亚晶界是由位错网组成的。

对性能影响:去除残余应力,使冷变形的金属件在基本保持应变硬化状态的条件下,降低其内应力,以免变形或开裂, 保持应变硬化状态的条件下,降低其内应力,以免变形或开裂, 并改善工件的耐蚀性。 并改善工件的耐蚀性。

再结晶是一种形核和长大的过程,靠原子的扩散进行。 冷变形金属加热时组织与性能最显著的变化就是在再结晶阶段发生的。特点: 1)、组织发生变化,由冷变形的伸长晶粒变为新的等轴晶粒; 2)、力学性能发生急剧变化,强度、硬度急剧下降, 应变硬化全部消除,恢复到变形前的状态3)、变形储能在再结晶过程中全部释放。三类应力(点阵畸变) 、变形储能在再结晶过程中全部释放。

对性能影响: 强度迅速下降, 强度迅速下降,塑性迅速升高。冷变形金属在加热过程中性能随温度升高而变化, 冷变形金属在加

热过程中性能随温度升高而变化,在再结晶阶段发生突变。 6.何谓临界变形度,在工业生产中有何意义。

再结晶后的晶粒大小与冷变形时的变形程度有一定关系,在某个变形程度时再结晶后得到的晶粒特别粗大,对应的冷变形程度称为临界变形度

粗大的经历对金属的力学性能十分不利,故在压力加工时,应当避免在临界变形程度范围内进行加工,一面再结晶后产生粗晶。此外,在锻造零件时,如锻造工艺或锻模设计不当,局部区域的变形量可能在临界变形度范围内,则退货后造成局部粗晶区,时零件在这些部位遭到破坏。

7.一块纯锡板被枪弹击穿,经再结晶退火后,大孔周围的晶粒大小有何特征,并说明原因。

答:晶粒异常长大,因为受子弹击穿后,大孔周围产生了较大的变形度,由于变形度对再结晶晶粒大小有着重大影响,而且在受击穿空洞的周围其变形度呈现梯度变化,因此当变形度达到某一数值的时候,就会得到特别粗大的晶粒了。

10.金属材料在热加工时为了获得较小的晶粒组织,应该注意什么问题?

答:应该注意其变形度避开金属材料的临界变形度;提高再结晶退火温度;尽量使原始晶粒尺寸较细;一般采用含有较多合金元素或杂志的金属材料,这样不仅增加变形金属的储存能,还能阻碍晶界的运动,从而起到细化晶粒的作用。

11.为了获得较小的晶粒组织,应该根据什么原则制定塑性变形以及退火工艺?

答:在热轧或锻造过程中: 在热轧或锻造过程中: 1)控制变形度; 控制变形度; 控制变形度 2)控制热轧或锻造温度。 控制热轧或锻造温度。 控制热轧或锻造温度 细化晶粒方法

在热处理过程中: 控制加热和冷却工艺参数, 控制加热和冷却工艺参数 利用相变 重结晶来细化晶粒。 重结晶来细化晶粒。

对冷变形后退火态使用的合金: 1)控制变形度; 控制变形度; 控制变形度 2)控制再结晶退火温度和时间。 控制再结晶退火温度和时间。 控制再结晶退火温度和时间 第八章习题

1.何谓扩散,固态扩散有哪些种类?答:扩散是物质中原子(或分子)的迁移现象,是物质传输的一种方式。固态扩散根据扩散过程是否发生浓度变化可以分为自扩散和异扩散;根据扩散是否与浓度梯度的方向相同可分为上坡扩散和下坡扩散;根据扩散过程是否出现新相可分为原子扩散和反应扩散。 2.何谓上坡扩散和下坡扩散?试举几个实例说明之。

上坡扩散是沿着浓度升高的方向进行扩散,即由低浓度向高浓度方向扩散,使浓度发生两级分化。例如奥氏体向珠光体转变的过程中,碳原子由浓度较低的奥氏体向浓度较高的渗碳体扩散,就是上坡扩散。下坡扩散就是沿着浓度降低的方向进行的扩散,使浓度趋于均匀化,例如铸件的均匀化退火、渗碳等过程都是下坡扩散。

3.扩散系数的物理意义是什么?影响因素有哪些?

扩散系数D=D0e(-Q/RT),其物理意义相当于浓度梯度为1时的扩散通量,D的值越大,则扩散越快。

4.固态金属中要发生扩散必须满足哪些条件。

固态金属要发生扩散,必须满足:1)扩散要有驱动力2)扩散原子要固溶3)温度要足够高4)时间要足够长

5.铸造合金均匀化退火前的冷塑性变形对均匀化过程有何影响?是加速还是减缓? 为什么。

塑性变形有细化晶粒的作用,使均匀扩散原子迁移的距离缩短,所以应该是加速, 因为1)内能提高;2)粗大的枝晶被打碎,扩散距离缩短,扩散过程加快。.

6.已知铜在铝中的扩散常数 D0=0.84×10-5m2/s,Q=136×103J/mol,试计算在 477℃和 497℃时铜在铝中的扩散系数。

解:由扩散系数D=D0e(-Q/RT)及已知条件D0=0.84×10-5m2/s,Q=136×103J/mol带入到扩散系数公式中,可得

D1=D0e(-Q/RT)= 0.84×10-5×e-136 ×10^3/[8.31×(477+273)]=

2.8022× 10

-15

m2/s

-5

-136 ×10^3/[8.31×(497+273)]

D2=D0e

(-Q/RT)

= 0.84×10×e

-15

=

4.9391 × 10 m2/s

故在477℃和 497℃时铜在铝中的扩散系数分别为2.8022× 10

-15

m2/s和4.9391 × 10

-15

m2/s。

8.可否用铅代替铅锡合金作对铁进行钎焊的材料,试分析说明之。答:不能,因为锡在铁中的扩散速度要比铅快得多,因此用铅锡合金作为钎焊材料,有助于保证焊接接头的强度,若用铅代替,则铅在铁中的扩散速率较低,异扩散速度较慢,因此将使焊接接头性能大大降低。 10.渗碳是将零件置于渗碳介质中使碳原子进入工件表面,然后以下坡扩散的方式使碳原子从表层向内部扩散的热处理方法。试问: (1) 温度高低对渗碳速度有何影响? (2) 渗碳应当在 r-Fe 中进行还是应当在 α-Fe 中进行? (3) 空位密度、位错密度和晶粒大小对渗碳速度有何影响?答:1)温度高时渗碳速度加快。温度是影响扩散系数的最主要因素。随着温度的升高,扩散系数急剧增大。这是由于温度越高,则原子的振动能越大,因此借助于能量起伏而越过势垒进行迁移的原子几率越大。此外,温度升高,金属内部的空位浓度提高,这也有利于扩散。

2)应当在γ-Fe中进行。尽管碳原子在α-Fe中的扩散系数比在γ-Fe中的大,可是渗碳温度仍选在奥氏体区域。其原因一方面是由于奥氏体的溶碳能力远比铁素体大,可以获得较大的渗层深度;另一方面是考虑到温度的影响,温度提高,扩散系数也将大大增加。

3)在位错、空位等缺陷处的原子比完整晶格处的原子扩散容易得多。原子沿晶界扩散比晶内快。因此,空位密度、位错密度越大,晶粒越小,则渗碳速度越快。

联系合同范文客服:xxxxx#qq.com(#替换为@)