汽车轻量化技术分析

发布时间 : 星期五 文章汽车轻量化技术分析更新完毕开始阅读

汽车轻量化技术分析

一、汽车轻量化技术发展的背景及意义:

现阶段,汽车工业的发展面临着三大严峻问题:即油耗、环保和安全,轻量化、环保回收及节约能源已成为全球汽车工业的发展趋势。针对此类问题,各国纷纷开始重视能源和环保议题制定了相应的法规,并提出了有效的改进措施。轻量化技术通过降低自身质量从而达到降低油耗、减少排放的目的。

有关研究数据表明, 若汽车整车质量降低 10%, 燃油效率可提高 6%-8%,; 若滚动阻力减少 10%, 燃油效率可提高 3%; 若车桥、 变速器等机构的传动效率提高10% ,燃油效率可提高 7%。此外,车辆每减重100kg,CO2排放量可减少约5g/km。

由此可见, 伴随轻量化而来的突出优点就是油耗显著降低,汽车轻量化对于节约能源、减少废气排放、实现我国汽车工业可持续发展十分重要。 汽车车身约占汽车总质量的30%, 空载情况下, 约70%的油耗用在车身质量上, 因此车身的轻量化对减轻汽车自重, 提高整车燃料经济性至关重要。同时, 轻量化还将在一定程度上带来车辆操控稳定性和一定意义上碰撞安全性的提升。 车辆行驶时颠簸会因底盘重量减轻而减轻, 整个车身会更加稳定, 轻量化材料对冲撞能量的吸收, 又可以有效提高碰撞安全性。 正是出于对减少能源消耗、减少污染物排放等目的,汽车轻量化技术一直以来成为科研、汽车生产制造等重点探索方向。无论是对于传统动力汽车,还是新能源汽车,轻量化所带来的经济效益和社会效益都相当可观。目前,在汽车轻量化领域,正呈现技术、工艺和材料等多方发力局面。

二、汽车轻量化的含义:

汽车轻量化是在满足汽车使用要求、安全性和成本控制要求的条件下,将结构轻量化设计技术与多种轻量化材料、轻量化制造技术集成应用实现的产品减重。以上是世界汽车产业对汽车轻量化的普遍共识与认识。但在实现汽车轻量化的同时,一个非常重要的前提是:不

能以牺牲车辆安全性和 NVH(噪音、振动、平顺性)为代价,汽车轻量化必须在预定整车减重目标、整车成本控制目标、安全性目标和 NVH 控制水平的全面约束下进行。

汽车轻量化并不是简单地以缩小汽车的体积或者减轻汽车的质量来衡量。汽车的安全性、稳定性、舒适性和耐撞性等与汽车的质量有直接关系,所以,还需要考虑其经济合理性,毕竟车属于商品,要让消费者接受它的价格。

(1)对于已有的功能可满足要求的汽车,轻量化的设计是降低重量而保持原功能不变,其轻量化的效果是直接的减重;

(2)现有功能尚不能全部满足要求或需要提升的汽车,轻量化设计是完善功能而保持质量不变;

(3)既要提高改进性能,同时也使汽车减重。正因如此,汽车轻量化设计实际上是功能改进,质量降低,结构优化和合理价格的结合。

三、汽车轻量化技术的发展历史与现状:

汽车结构的创新化设计和特殊材料的使用是汽车轻量化技术的重要组成部分。如果汽车车身结构设计合理,不仅可以减少材料的使用量,还能达到轻量化的目的。要想实现汽车轻量化,车身材料是非常重要的。相关研究表明,汽车轻量化技术主要可以分为以下四个方面: ①轻量化材料:实现汽车轻量化必须集成利用多种新材料和相关应用技术。 目前,汽车轻量化材料使用的主要是高强度钢,其次是铝镁合金、复合材料及塑料。 其中,高强材料主要用于降低钢板厚度,保证汽车结构和安全性能;低密度材料主要用于非结构件替换和减轻汽车质量。

1) 高强钢是轻量化的关键材料,它的大量使用既实现了整车轻量化, 又保证了汽车的安全性和可靠性,因此,高强钢使用面广且量大。

1994年,为提高钢铁材料相比其它材料在车身上应用的竞争地位,国际钢铁协会组织世界 18个国家35家钢铁公司并委托Porche公司,持巨资开展了超轻质钢车ULSAB(Ultralight Steel Auto Body)项目。

开发出的超轻质钢车身质量为203kg,比同级别轿车车身质量平均减轻25%,与此同时车身扭转刚度提高了80%,弯曲刚度提高52%,车身第一阶固有频率上升到60Hz,并且完全满足碰撞安全性法规要求。

1997 年开始,又开展了超轻钢汽车附件ULSAC(Ultralight Steel Auto Closures)

项目。通过将车门结构改用无框架形式,同时车门外板和车门管件均采用高强度钢制造,在满足所有结构性能要求的前提下减轻车门质量36%,而制造成本仅为133美元。

2) 铝合金是轻质材料, 具有良好的抗腐蚀性,应用前景良好。 近年来,铝材在汽车上应用量增加很快,主要是板材、挤压材、铸铝及锻铝,在车身结构、空间框架、外覆盖件和车轮等处均有大量应用。 HONDA 公司1989年面市的NSX是一体式的铝车身结(单体构造车身),车身在融入轻量化设计理念之后,重量仅1270 公斤。采用此种结构的还有美洲豹新款“XJ”型轿车和福特公司的AIV轿车,AIV汽车总共使用铝台金270kg,比传统钢制汽车减轻200kg。 综合ASF与单体构造车身结构的优点,本田公司开发了Insight复合结构全铝车身,最大限度的发挥铝合金的优势。与铝合金单壳体车身(NSX车)相比,Insight铝复合车身所用的零件少 15%,焊点少24%。此外,与三门钢车身Civic车相比,白车身的质量减小47%而扭转刚度提高38%,弯曲刚度提高 13%,同时具有很好的碰撞安全性。通用汽车公司开发的五座轿车Precept使用铝合金制造车身。车身使用了49kg 铝挤压型材、64kg铝合金板及 32kg铝压铸件,与传统钢结构车身相比,Precept的车身质量减轻45%。

3) 镁合金是比铝更轻的材料, 其体积质量仅为1.8 kg/m3,轻量化效果更明显。 起初是用于壳体类、气缸盖罩盖和方向盘骨架等件, 现在已经扩展到座椅骨架、车门、车顶、仪表盘骨架和支架类零件。

20世纪90年代,奔驰公司首先在SL Roadster中采用了镁合金座椅,使车重明显减轻。

4) 塑料及纤维复合材料在汽车工业的应用也日趋增加,汽车上应用塑料件已达数百个。 在重型卡车上塑料和复合材料的应用已超过 150 kg, 由普通的塑料到高强度复合材料均有应用。其中尤以SMC和GMT的应用最为广泛。

5) 金属基复合材料是 20 世纪 60 年代发展的新材料,80 年代之后进展很快。 汽车工业应用的 MMC 主要是纤维增强及颗料增强铝基复合材料。 应用于发动机与刹车系统零部件。 发动机零件有缸套、活塞、连杆、活塞销、摇臂和气门挺柱。 在刹车系统应用于刹车盘和刹车毂。

复合材料在整车车身上有一些应用,如通用公司的Johnson等研制成功一款复合材料白车身,在满足包括静刚度、耐久性、碰撞安全性等结构性能要求前提下,比传统钢车身质量减轻了60%。1994年,克莱斯勒推出了复合材料概念车CCV(Composite Concept Vehicle),在节省加工时间约70%的同时,CCV质量减轻20~50%。新型的奔驰 S 级车上总共使用了

180kg塑料及复合材料,其中有36kg的车身外零部件。

②优化设计:随着汽车工业设计水平的不断提高,很多汽车开始采用超轻悬架结构、高刚性结构来减轻其质量,常采用优化并排焊点、加强筋、减重孔等方式来达到轻量化目的;

1)结构构建:汽车的优化设计主要针对车身与关键零部件总成2 个方面。优化设计中可以:1>优化车身的空间结构,满足各种工作载荷;2>减小或减少车身多余的尺寸、零件数量和零部件厚度;3>优化零部件形貌,减少不必要的结构或用于增强的加强件数目。 2)材料选择:优化设计的核心是通过对汽车产品的合理设计,在满足整车使用性和经济性各项要求的情况下, 选择并使用适当的轻量化材料,需要利用设计者的经验和CAE 技术。前者的实质是轻量化数据库建设,设计者的经验可以通过积累获得转化, 成为轻量化数据库专家系统的一环。 同时,从设计的静动力学分析,到关重件生产工艺模拟,再到整车性能研究,CAE 技术的利用可以给出材料选择

联系合同范文客服:xxxxx#qq.com(#替换为@)