血液

发布时间 : 星期五 文章血液更新完毕开始阅读

泵出,使血液不会在静脉和心房中蓄积。(2)心肌收缩能力:是指心肌不依赖于前后负荷而能改变其力学活动的一种内在特性。心肌收缩能力是心肌细胞功能状态的一种表述,与心脏搏出量或每搏功呈正变关系。搏出量的这种调节与心肌初长度无关(故又称等长自身调节),而是通过调节心肌收缩活动的强度和速度实现的。(3)后负荷:心室的后负荷是指动脉血压,它的变化可影响心室肌的收缩过程,从而影响心搏出量。如在其他因素不变的情况下,动脉血压升高,会直接引起等容收缩期延长,射血期缩短,射血速度减慢,搏出量减少。所以为克服后负荷的增加,必须增强心肌的收缩力量,才能维持一定的搏出量。(4)心率:心率在一定范围内加快,可增加每分输出量;但是当心率太快时(>180次/分),由于心室充盈不足,每搏输出量降低,反而使每分输出量降低;而心率太慢时(<40次/分=,心室充盈量的增大接近极限,充盈量和每搏输出量不再相应增加,也使心输出量减少。

365.心室肌细胞动作电位的主要特征是:复极化时间长,有2期平台;其动作电位分为去极化时相(0期)和复极化时相(1、2、3、4期);0期去极是由快钠通道开放形成的,而且4期稳定,故为快反应非自律细胞。各期的离子基础是:0期为Na+内流(快通道);1期为K+外流(一过性);2期为Ca2+(及少量Na+)缓慢持久内流与K+外流处于平衡状态,使复极减慢形成平台;3期为K+迅速外流;4期(静息期)是Na+ -K+泵开动及Ca2+- Na+交换使细胞内外离子浓度的不均衡分布得以恢复的时期。

366.心肌细胞兴奋后,其兴奋性将发生一系列周期性变化,该周期性变化的过程及其意义为:(1)有效不应期:从0期去极化开始到3期膜内电位复极化达-60mV这段时间内,即使给以超过阈值的刺激,也不能再次引发动作电位产生。(2)相对不应期:膜电位3期复极从-60mV~-80mV期间内,兴奋性有所恢复但仍低于正常,须用阈上刺激才可引发动作电位再次产生。(3)超常期:膜电位由-80mV恢复到-90mV之前的时间内,兴奋性高于正常,用阈下剌激也能引发动作电位再次产生。因而,心肌兴奋性的周期性变化与钠通道的状态有关。由于心肌的有效不应期特别长,一直持续到心室机械收缩的舒张早期,在此期内,任何刺激都不能使心肌再次发生兴奋和收缩,因此心肌不会象骨骼肌那样发生强直收缩,从而保证心脏收缩和舒张交替进行,以实现其持久的泵血功能。

367.如果在心室有效不应期之后,心室肌受到额外的人工刺激或窦房结之外的异常刺激,则可产生一次期前兴奋,所引起的收缩称为期前收缩或期外收缩。由于期前兴奋也有自己的有效不应期。因此,在期前收缩之后的一次由窦房结发出并传播而来的兴奋传到心室肌时,常常正好落在期前兴奋的有效不应期内而失效,结果不能引起心室兴奋和收缩,出现一次“脱失”,必须等到下一次窦房结的兴奋传到心室时,才能引起心室收缩。所以,在一次期前收缩之后往往出现一段较长的心室舒张期,称为代偿间歇。

368.浦肯野细胞属于快反应自律细胞,窦房结细胞属于慢反应自律细胞。它们的4期都不稳定,会产生自动去极化,其形成机制如下:窦房结细胞:4期的自动去极是由随时间而增长的净内向电流所引起。它是由IK、If和ICa-T三种离子电流所组合而成。①IK通道是时间依赖性的,在3期复极达-40mV时便开始逐渐失活,因而K+的外向电流出现进行性衰减,这是窦房结自律细胞4期自动除极的最重要的离子基础。②If是一种进行性增强的内向离子流(主要为Na+流),这是细胞膜向复极化或超极化方向激活的离子流,其最大激活电位为-100mV,由于窦房结细胞的最大复极电位仅为-70mV,所以If流在窦房结细胞4期自动去极过程中虽有作用,但比IK小得多。③在窦房结细胞4期自动去极过程的后半期,还存在一种缓慢内向电流ICa-T,即T型钙通道,其阈电位约为-50mV,在自动除极的后半期起作用。在三种电流的共同作用下,膜去极达-40 mV,而引起下一个自律性动作电位。由于窦房结细胞的自律性高,在正常情况下窦房结作为心脏的起搏点控制心脏的节律性活动。浦肯野细胞:4期的自动去极化与窦房结细胞相比较慢,4期自动去极的离子基础主要有两种:①If流(为主):随时间而进行性增强的内向离子流(主要为Na+流),②IK:逐渐衰减的外向K+离子流。二者共同作用使浦肯野细胞的4期缓慢去极,当去极达-70mV时,才能引起下一个动作电位,但是在整体内其自律性不能表现出来,是潜在起搏点。

369.兴奋传导的途径是:正常心脏兴奋由窦房结产生后,一方面经过心房肌传导到左右心房,另一方面是经过某些由心房肌构成的“优势传导通路”传给房室交界,再经房室束及其左、右束支、浦氏纤维传至左、右心室。即窦房结→心房肌→房室交界→房室束→左、右束支→浦肯野纤维→心室肌。兴奋传导的特点是:①心房肌的传导速度慢,约为0.4m/s,“优势传导通路”的传导度快,因此窦房结的兴奋几乎可同时到达左、

右心房,使两心房同步收缩;②房室交界传导性较差,速度很慢,每秒只有0.02m/s,因此在这里兴奋在此产生约0.1秒的延搁(房-室延搁);③心室内传导组织传导速度很快,呈网状分布的末梢浦肯野纤维的传导速度可达4m/s,高于心室肌,这样房室交界传来的兴奋可通过末梢浦肯野纤维网的传导,迅速传至整个左、右心室,使之产生同步性收缩。兴奋通过房室交界传导速度显著减慢的现象,称为房-室延搁。它保证了窦房结所产生的窦性起搏节律总是先使心房肌兴奋并收缩,经过较长时间(约0.1秒)后再引起心室肌兴奋和收缩。形成了心房收缩在先,心室收缩在后,避免了心房、心室收缩重叠的现象,充分发挥心房的初级泵和心室的主力泵作用,使两者完成协调一致的泵血功能。

370.心肌的生理特性有:自律性、兴奋性、传导性、收缩性。心肌与骨骼肌比较有以下不同:(1)心肌有自动节律性,骨骼肌无自动节律性。在整体内,心肌由自律性较高的细胞(正常起搏点)控制整个心脏的节律性活动;而骨骼肌收缩的发生有赖于运动神经的传出冲动;(2)心肌兴奋后的有效不应期特别长,不会发生强直收缩,而总是收缩、舒张交替进行以完成射血功能;而骨骼肌的不应期很短,容易发生强直收缩,以维持姿势和负重。(3)心肌的收缩有“全或无”现象,因为两心房、两心室分别组成两个功能性合胞体;骨骼肌为非功能性合胞体,整块骨骼肌的收缩强弱随着受刺激的强度变化而不同;心脏上有特殊传导系统,保证心房、心室先后有序收缩,骨骼肌上不存在特殊传导系统,骨骼肌的活动受躯体神经支配。(4)心肌细胞的终末池不发达、容积小、贮存Ca2+比骨骼肌少,所以心肌收缩更依赖于外源性Ca2+;而骨骼肌收缩不依赖于外源性钙。

371.将引导电极置于体表的一定部位,借助心电图仪,可以记录出整个心脏兴奋过程中的电位变化波形,称之为心电图(electrocardiogram,ECG)。心电图各波代表的意义:①P波:两心房去极化的过程;②QRS综合波:两心室去极化的过程;③T波:心室复极化过程; ④PR间期:心房去极化开始至心室去极化开始,反映了兴奋从窦房结产生至传导到心室所需时间;⑤ST段:心室去极化完毕,复极化尚未开始;⑥QT间期:心室去极化和复极化所需的时间。

372.动脉血压的形成有赖于以下几个方面:充足的循环血量(循环系统平均充盈压)和心脏射血(每搏输出量,心率)是形成动脉血压的两个基本条件;另一个决定动脉血压的因素是外周阻力(主要受小动脉、微动脉口径和血液粘滞度的影响);同时,大动脉壁的弹性对动脉血压起缓冲作用。动脉血压的形成过程:在心室射血期,心室释放的能量,一部分用于推动血液流动,大部分用于对大动脉壁的扩张,即以势能形式暂时贮存。在心舒期,大动脉弹性回缩,又将一部分势能转变为动能,使血液在心舒期继续向前流动,从而使动脉血压在心舒期仍维持在一定水平。故大动脉管壁的弹性贮器作用(第二心脏作用)对血压具有缓冲作用,使收缩压不致过高,舒张压不致过低,并将心室的间断射血变为持续的血液流动。同时,如果仅有心室射血,而不存在外周阻力,则心室收缩释放的能量将全部表现为动能,射出的血液将全部流至外周,因而不能使动脉压升高。在机体内,外周阻力来源于血液向前流动时血流与血管壁的摩擦和血液内部的摩擦。由于小动脉、微动脉对血流有较高的阻力,因此在心缩期内仅1/3血液流至外周,约2/3被暂时贮存于主动脉和大动脉内,主动脉压也随着升高。心室舒张时,被扩张的大动脉弹性回缩,把贮存的那部分血液继续向外周方向推动,并使主动脉压在舒张期仍能维持在较高的水平。影响动脉血压的因素主要包括五个方面:(1)每搏输出量:在外周阻力和心率的变化不大时,搏出量增加,收缩压升高大于舒张压升高,脉压增大;反之,每搏输出量减少,主要使收缩压降低,脉压减小。收缩压主要反映搏出量的大小。(2)心率:心率增加时,舒张压升高大于收缩压升高,脉压减小;反之,心率减慢时,舒张压降低大于收缩压降低,脉压增大。(3)外周阻力:外周阻力加大时,舒张压升高大于收缩压升高,脉压减小;反之,外周阻力减小时,舒张压的降低大于收缩压降低,脉压加大。舒张压主要反映外周阻力的大小。(4)大动脉弹性:它主要起缓冲血压作用,当大动脉硬化时,弹性贮器作用减弱,收缩压升高而舒张压降低,脉压增大。(5)循环血量和血管系统容量的比例:如失血、循环血量减少,而血管容量改变不能相应改变时,则体循环平均充盈压下降,动脉血压下降。

373.影响静脉回流的因素有:(1)体循环平均充盈压:在血量增加或容量血管收缩时,体循环平均充盈压升高,静脉回心血量也愈多;反之则减少。(2)心脏收缩力量:心缩力量增强,心室收缩末期容积减少,心室舒张期室内压较低,对心房和大静脉中血液的抽吸力量大,静脉回流增多。心衰时,由于射血分数降

低,使心舒末期容积(压力)增加,从而妨碍静脉回流。(3)体位的改变:当人从卧位转为直立时,身体低垂部分的静脉跨壁压增大,因静脉的可扩张性大,造成容量血管充盈扩张,使回心血量减少。(4)骨骼肌的挤压作用:当骨骼肌收缩时,位于肌肉内和肌肉间的静脉受到挤压,有利于静脉回流;当肌肉舒张时,静脉内压力降低,有利于血液从毛细血管流入静脉,使静脉充盈。在健全的静脉瓣存在前提下骨骼肌的挤压促进静脉回流。(5)呼吸运动:吸气时,胸腔容积加大,胸内压进一步降低,使位于胸腔内的大静脉和右心房跨壁压增大,容积扩大,压力降低,有利于体循环的静脉回流;呼气时回流减少;同时,左心房肺静脉的血液回流情况与右心相反。

374.微循环是微动脉和微静脉之间的血液循环。它的血流通路有:(1)直捷通路:血液从微动脉、后微动脉、通血毛细血管而进入微静脉。在骨骼肌组织的微循环中较多见。此通路经常处于开放状态,血流较快,其意义使一部分血液能迅速通过微循环而进入静脉,增加了回心血量。(2)动-静脉短路:血液从微动脉经动-静脉吻合支直接进入微静脉,此通路管壁较厚、血流迅速,几乎不进行物质交换。多见于皮肤、皮下组织的微循环中,与体温调节功能有关。(3)迂回通路:血液从微动脉经后微动脉、毛细血管前括约肌和真毛细血管,然后汇集到微静脉。此通路血管壁的通透性高,血流缓慢,是血液和组织液之间进行物质交换的场所。神经对微循环的直接影响不大,而体液中缩血管或舒血管物质可控制毛细血管前阻力血管使其收缩或舒张。微循环的调控,主要是自身调节。后微动脉和毛细血管前括约肌的交替舒缩活动(血管运动),主要与局部代谢产物的积聚有关。真毛细血管关闭一段时间后,局部代谢产物增多,使后微动脉和毛细血管前括约肌舒张,导致真毛细血管开放。真毛细血管开放后,局部组织中积聚的代谢产物被血流清除,后微动脉和毛细血管前括约肌又收缩,使真毛细血管关闭,如此周而复始。通常,同一组织内部不同部位的毛细血管是交替开放和关闭的。因此,组织的总血流量与当时组织的代谢水平相适应。

375.组织液是血浆滤过毛细血管壁而形成。其生成量主要取决于有效滤过压。生成组织液的有效滤过压=(毛细血管血压+组织液胶体渗透压)-(血浆胶体渗透压+组织液静水压)。毛细血管动脉端有效滤过压为正值,因而有液体滤出形成组织液,而静脉端有效滤过压为负值,组织液被重吸收进入血液,组织液中的少量液体将进入毛细淋巴管,形成淋巴液。影响组织液生成的因素有:①毛细血管血压:毛细血管前阻力血管扩张,毛细血管血压升高,组织液生成增多。②血浆胶体渗透压:血浆胶体渗透压降低,有效滤过压增大,组织液生成增多。③淋巴回流:淋巴回流受阻,组织间隙中组织液积聚,可呈现水肿。④毛细血管壁的通透性:在烧伤、过敏时,毛细血管壁通透性显著增高,组织液生成增多。

376.夹闭一侧颈总动脉后,会出现动脉血压的升高。心脏射出的血液经主动脉弓、颈总动脉而到达颈动脉窦。当血压升高时,该处动脉管壁受到机械牵张而扩张,从而使血管壁外膜上作为压力感受器的感觉神经末梢兴奋,引起减压反射,使血压下降。当血压下降使窦内压降低,减压反射减弱,使血压升高。在实验中夹闭一侧颈总动脉后,心室射出的血液不能流经该侧颈动脉窦,使窦内压力降低,压力感受器受到刺激减弱,经窦神经上传中枢的冲动减少,减压反射活动减弱,因而心率加快、心缩力加强、回心血量增加(因容量血管收缩)、心输出量增加;阻力血管收缩,外周阻力增加。导致动脉血压升高。

377.主动脉弓压力感受器的传入纤维一般均在迷走神经中上传入中枢,但家兔主动脉弓压力感受器的传入纤维却自成一束,在颈部与迷走神经及颈交感神经伴行,称之为减压神经(相当于主动脉神经)。所以,电刺激完整的减压神经或切断后的向中端,其传入冲动相当于压力感受器的传入兴奋,传入延髓心血管中枢将引起减压反射的加强,使心率减慢,心输出量减少,外周血管阻力降低,动脉血压下降。由于减压神经是单纯的传入神经,故刺激其外周端对动脉血压无影响。

378.刺激心迷走神经外周端即刺激支配心脏的迷走神经,其末梢释放的递质是乙酰胆碱(ACh),ACh与心肌细胞膜上的M胆碱受体结合,可导致心率减慢,心房肌收缩能力减弱,心房肌不应期缩短,房室传导速度减慢,甚至出现房室传导阻滞,即负性变时、变力和变传导效应。两侧心迷走神经对心脏不同部位的支配有所侧重。一般说,右侧迷走神经主要分布到窦房结、右心房的大部,因而对心率的影响较大;而左侧迷走神经则主要分布到房室传导系统(房室结、房室束)、小部分心房肌及心底部的心室肌,对心脏兴奋传导的影响大。在实验中,刺激右侧迷走神经外周端,其末梢释放的ACh一方面使窦房结细胞在复极过程中K+外流增加,结果使最大复极电位绝对值增大;另一方面,其4期K+通透性的增加使IK衰减过程减

弱,自动去极速度减慢。这两种因素均使窦房结自律性降低,心率因而减慢。刺激强度加大时,可出现窦性停搏,使血压迅速下降。刺激去除后,血压回升。刺激左侧迷走神经外周端也可使血压下降,但主要是由于ACh抑制房室交界区细胞膜上的Ca2+通道,减少Ca2+内流,使其动作电位幅度减小,兴奋传导速度减慢,出现房室传导阻滞而减慢心率,进而使血压下降。故刺激左侧迷走神经出现的心率减慢及血压下降的程度均不如刺激右侧时明显,因而实验时多选用右侧迷走神经。

379.静脉注射肾上腺素,血压先升高后降低,然后逐渐恢复。肾上腺素对心脏的作用是心率加快,兴奋传导加速,心肌收缩力增强,心输出量增加;对血管的作用则主要取决于血管平滑肌上受体的分布情况:对α受体占优势的皮肤、肾脏、胃肠道等内脏的血管,肾上腺素使之收缩;而对β受体占优势的骨骼肌、肝脏和心脏冠脉等血管,小剂量的肾上腺素常使其舒张,大剂量时才出现缩血管反应。静脉注射肾上腺素后,开始血液中浓度较高,对心脏和α受体占优势的血管发生作用,使心跳加快,心肌收缩力加强,心输出量增多,皮肤、肾和胃肠等内脏血管收缩,所以血压升高。随着血中肾上腺素的代谢,其浓度逐渐降低,对α受体占优势的血管作用减弱,而对β受体占优势的骨骼肌、肝脏、冠脉血管发生作用,使之扩张,引起血压下降。最后肾上腺素逐渐消失,血压也逐渐恢复正常。

380.冠脉循环的解剖、生理特点:(1) 血管走行:供应心肌的冠脉主干、分支走行于心脏表面,其小分支常以垂直心脏表面的方向穿入心肌,因而冠脉血管容易在心肌收缩时受到压迫。心脏舒张期,冠状血流量增多。(2) 毛细血管丰富:心肌的毛细血管网分布极为丰富,毛细血管和心肌纤维数的比例为1:1,交换面积大,交换速度快。(3) 冠脉循环缺乏有效的功能吻合支:正常人冠脉侧支细小,血流很少,当冠脉突然阻塞时,侧支循环难以很快建立。冠脉循环的血流特点:(1)冠脉循环途径短(从主动脉根部流入,直接流回右心房)、压力高、流速快。(2)冠脉循环血流量大,冠脉血流量占心输出量的4%~5%。而且心肌活动加强时,血流量可大大增加(约增加5~6倍)。(3) 心肌耗氧量大,故血流流经心肌后,被心肌摄取氧多,造成冠状动-静脉之间氧差极大。(4) 血流量随心动周期波动。左心室收缩时,血流量只有舒张时的20%~30%。右心室壁薄,心肌收缩对血流量的影响不明显。因此,决定冠状血流量的主要因素是:动脉舒张压的高低和心舒期的长短。冠脉血流量的调节:最重要的因素是心肌代谢水平,植物性神经的调节作用是次要的。(1)心肌代谢水平:冠脉血流量与心脏代谢水平成正比,当心肌代谢水平增强时引起冠脉舒张的原因不是低氧本身,而是心肌代谢产物,,尤其是腺苷的作用。心肌代谢的其他产物如CO2、H+、乳酸等也使冠脉舒张,但作用较弱。(2)神经调节:交感神经兴奋时,心肌活动增强,代谢增强,代谢因素的扩血管作用可掩盖交感神经的缩血管效应。迷走神经的直接作用是使冠脉舒张,但因使心脏活动减弱,耗氧量少,抵消它的直接作用,使冠脉流量常无明显改变。

381.脑循环的特点:(1)血流量大,耗氧量多,同时脑组织对缺氧特别敏感,耐受性差。(2)血流量变化小。受颅腔容积的限制,脑血管舒缩程度不大。(3)存在血-脑脊液屏障和血-脑屏障,严格限制物质进入脑组织。脑血流量的调节: (1)肌源性自身调节。脑血流量主要取决于脑的动静脉之间的压力差和脑血管的血流阻力。在正常情况下,影响脑血流量的因素主要是颈动脉压,颈动脉压升高时,脑血流量增加、颈动脉压低时,脑血流量减少。但是当平均动脉压在60~140mmHg范围变化时,通过自身调节使脑血流量保持恒定。(2)局部化学环境对脑血管舒缩活动影响大。当血液CO2分压升高或O2分压降低、局部脑区活动增加(局部代谢产物增多、氧分压降低)时,脑血管舒张,脑血流量增加。(3)神经因素对脑血管活动的调节作用较小。脑血管的神经支配少,作用弱。

382.人体急性中等量以下失血(失血量占总血量10%以下)可通过神经体液的调节,使血量逐渐恢复,不会出现明显的心血管机能障碍和临床症状。其所产生的代偿性反应的出现大致如下:(1)交感神经系统兴奋:在失血30秒内,动脉血压尚无改变时,首先是容量感受器传入冲动减少,引起交感神经兴奋。当失血量继续增加,通过降压反射减弱和化学感受性反射增强,引起三方面的效应:①大多数器官的阻力血管收缩(特别是腹腔脏器的小动脉强烈收缩),动脉血压下降的趋势得以缓冲,于是器官血流量重新分配,以保证心脑血管的供血。②容量血管收缩,以保证有足够的回心血量和心输出量。③心率加快,心缩力增强,呼吸运动加强。交感神经兴奋还可以同时促进肾上腺髓质释放大量儿茶酚胺,通过血液循环的运送,参与增强心脏活动和收缩血管等调节过程。(2)毛细血管处组织液重吸收增加:失血1h内,因交感缩血管神

经兴奋使毛细血管前阻力血管收缩,毛细血管前阻力和毛细血管后阻力的比值增大故组织液回收多于生成,使促进血浆量恢复。(3)机体失血约1h后,比较缓慢地出现血管紧张素Ⅱ、醛固酮和血管升压素的生成增加。这些体液因素除有缩血管作用外,还促进肾小管对Na+和水重吸收,有利于血量恢复。血管紧张素Ⅱ还可引起渴觉和饮水行为,使机体通过饮水增加细胞外液量。(4)血浆蛋白质部分由肝脏加速合成,在一天或更长时间恢复。红细胞则由骨髓造血细胞加速生成,约数周才能恢复。如果失血量较大,达总量的20%时,上述各种调节机制将不足以使心血管机能得到代偿,会导致一系列临床症状。如果在短时间内丧失血量达全身总血量的30%或更多,就可危及生命。

联系合同范文客服:xxxxx#qq.com(#替换为@)