《材料科学基础》课后答案(1-7章)讲解

发布时间 : 星期一 文章《材料科学基础》课后答案(1-7章)讲解更新完毕开始阅读

中画出它们的方向,并写出它们的晶向指数。

13.已知Cu的点阵常数为0. 255nm,密度为8. 9g/cm\摩尔质量为63. 54g/mol。如果Cu在交变载荷作用下产生的空位浓度为 5 X 10-4,并假定这些空位都在{111}面上聚集成直径为20nm的空位片,(相当于抽出一排原子而形成位错环) (1)计算 lcm3晶体中位错环的数 目。 (2)指出位错环的位错类型。 (3)位错环在{111}面上如何运动?

14.为什么点缺陷在热力学上是稳定的,而位错则是不平衡的晶体缺陷了

15.柏氏矢量为答巨10〕的全位错可以在面心立方晶体的哪些{111}面上存在?试写出该全位错在这些面上分解为两个a/6<112>分位错的反应式。

16.根据单位长度位错应变能公式(4-7)以及位错密度与位向差的关系式(4-10),推导出小角度晶界能Y(;与0之间的关系式: 汽=Y,)B ( B一1nB式中、4洽h-o l。为与位错中心。能有关的积分常数·提示:在式(4-7)中未考虑位错中心 (YGYo)的错排能,推导时可另加上一常数项。

17.金属在真空高温加热时,抛光表面上晶界处由于能量较高,原子蒸发速度较快因而产生沟槽,这一沟槽常称为热蚀沟,假定自由表面的表面能为晶界能的三倍,且晶界与表面垂直,试在图上画出各项界面能之间的平衡情况,并计算热蚀沟底部的二面角。

18.在如图 4-56所示的 Cu晶界上有一双球冠形第二相 、Cu晶粒工R,已知 Cu的大角度晶界能为0. 5J· m-',丫一一荟一一月一汤一一丫 (l)分别计算当“一‘0, )=400, )=60’时Cu与第二相之间 / C晶痴一\的相 界能。 (2)讨论晶界上第二相形态与相界能及晶界能之间的关图 4-56系。 19.表面为什么具有吸附效应?物理吸附及化学吸附各起源于什么?试举出生活中的例子说明吸附现象的实际意义。 20。从热力学角度解释润湿现象的本质。

第五章

1.按不同特点分类,固溶体可分为哪几种类型?影响置换固溶

体固溶度的因素有哪些?

2.影响固溶体的无序、有序和偏聚的主要因素是什么? 3.(1)间隙化合物与间隙固溶体有何根本区别?

(2)下列中间相各属什么类型?指出其结构特点及主要控制因素:MnS, Fe3C, Mg2Si, SiC, Cu31Zn8, Fe,N, WC, Cr23C6 4.陶瓷材料中的固溶方式与金属相比有何不同?影响陶瓷材料中离子代换或固溶度的因素有哪些?

5.铋(熔点为 271.5℃)和锑 (熔点为630.7℃)在液态和固态时均能彼此无限互溶,wBi=50%的合金在 520℃时开始结晶出成分为 wSb = 87%的固相。wBi =80%的合金在 400℃时开始结晶出成分为wSb =64%的固相。根据上述条件, (1)绘出 Bi-Sb相图,并标出各线和各相区的名称。

(2)从相图上确定含锑量为wSb =40%合金的开始结晶和结晶终了温度,并求出它在400℃时的平衡相成分及相对量。

L630.7520484400332271.5αL+αBi2040WSb(%)6080Sb解:(1)Bi-Sb相图

(2)含锑量为wSb =40%合金的开始结晶约484℃和结晶终了温度约332℃

wSb =40%合金在400℃时的平衡相成分为液相(20%锑)和铋固溶体(64%锑) 相对量由杠杆定律求出:

40%?20%5??45.5% 64%?20wL?1?w??1?45.5%?54.5%w??

6、根据下列实验数据绘出概略的二元共晶相图,A组元的熔点为1000℃,B组元的熔点为700℃。wB=25%的合金在500℃

凝固完毕,含73.33%初生α相,其余为共晶体(α+β)。含50%B的合金也在500℃凝固完毕,含40%初生α相,其余为共晶体(α+β),此合金中α相的总量占合金总量的50%,试画出此A—B二元相图(假定α相及β相的固溶度不随温度而改变)。 解:设共晶反应的三个成分点(α、L、β)含B量依次为x,y,z 则根据杠杆定律:

73.3%?y?50%z?50%y?25% 40%? 50%=

y?xy?xz?x联立以上3式,解得:x?5%,y?80%,z?95%

作图如下: 7.根据下列条件绘制A-B二元相图。

已知 A-B二元相图中存在一个液相区 (L)和七个固相区 ((a,阝、Y, S, u,。、匀,其中。、 (3, ), S, pc是以纯组元为基的固溶体,。和安是以化合物为基的固溶体 (中间相)、。相中含 B量小 、勺、~

于份相中的含 B量。相图中存在下列温度,且 T, >T2>7'3>...>Tn,其中T- T;分别为纯组元A和B的熔点;T2,T7,Tiu为同素异构转变温度; T3为熔晶转变温度;TS为包晶温度;T6为共晶转变温度;7':为共析转变温度;T9, Tii为包析转变温度。

8. (1)应用相律时须考虑哪些限制条件?

(2)试指出图 5-115中的错误之处,并用相律说明理由,且加以改正 。

解:(1)相律只适用于热力学平衡状态。平衡状态下各相的温度应相等 (热量平衡);各相的压力应相

等 (机械平衡);每一组元在各相 中的化学位必须相同 (化学平衡 )。

2)相律只能表示体系中组元和相的数目,不能指明组元或相的类型和含量。 3)相律不能预告反应动力学 (速度)。 4)自由度的值不得小于零 。 (2)主要错误如下: a.两相平衡自由度不为0,

b.纯组元相变,两相平衡,f=0,温度固定; c. 二元合金最多只能三相平衡,不能四相平衡,三相平衡时f=0,相成分唯一,不能变动。 d.二元合金最多三相平衡时自由度为零,温度不变,三相平衡线为水平线 9.分析 wC = 0. 2%的铁一碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示室温下的相组成物及组织组成物的相对量。

10.计算wC=3%C的铁-碳合金室温下莱氏体的相对量;组织中珠光体的相对量;组织中共析渗碳体的相对量。

解:莱氏体的相对量:

意图,说明各阶段的组织,并分别计算

?Ld??3.0?2.11?100%?40.6%

4.3?2.11组织中珠光体的相对含量:

?P??FeC

4.3?3.06.69?2.11??100%?46%

4.3?2.116.69?0.77?46%?0.77?0.0218?100%?5.2%

6.69?0.0218组织中共析渗碳体的相对含量:

3共析11.利用 Fe-Fe3C相图说明铁一碳合金的成分、组织和性能之间的关系。 12.试比较匀晶型三元相图的变温截面与二元匀晶相图的异同。

13.图 5-116中为某三元合金系在T,. T2温度下的

等温截面。若 7', >T2,此合金系中存在哪种三相平衡反应?

14.利用所给出的 Fe-Cr-C系wc. =17%的变温截面。

(” 填写图 5-117上空 白相区 。

(2)从截面图上能判断哪一些三相区的三相反应?用什么方法?是什么反应?

(3)分析we=1.2写的合金平衡凝固过程。 8.(1)应用相律时必须考虑哪些限制条件? (2)利用相图

10. 含wC=3%C的铁-碳合金室温下莱氏体的相对量;组织中珠光体的相对含量;组织中共晶渗碳体的相对含量。

第六章

简述二元合金平衡凝固的特点

答:二元合金平衡凝固的特点:

1、液相中溶质原子通过迁移(对流+扩散)而分均匀,固相中溶质原子通过扩散也分布均匀; 2、固相及液相的成分随温度变化而变化,但在任一温度下都达到平衡状态;

3、结晶后晶粒内成分均匀,无宏观偏析及微观偏析。

1.液体金属在凝固时必须过冷,而在加热使其熔化却毋需过热,即一旦加热到熔点就立即熔化,为什么? 今给出一组典型数据作参考: 以金为例,其 γ

SL=0.132,

γLV=1.128, γSV=1.400分别为液-固、液-

气、固-气相的界面能(单位 J/m2)。

解:液体金属在凝固时必须克服表面能,形核时自由能变化大于零,故需要过冷。固态金属熔化时,液相若与气相接触,当有少量液体金属在固相表面形成时,就会很快覆盖在整个表面(因为液体金属总是润湿同一种固体金属)。 由于熔化时,?GV=0,所以?G=?GV+?G(表面)= ?G(表面),因为液体金属总是润湿同一种固体金属,即表面能变化决定过程能否自发进行, 而实验指出:γ

SV=1.4>γLV +γSL=0.132+1.128=1.260,说明在熔化时,表面自由能的变化?G(表面)<0。即不存在表

面能障碍,也就不必过热。

2.式(6-13)为形核率计算的一般表达式。对金属,因为形核的激活能(书中用 △GA符号)与临界晶核形成功(△Gk

*??G均?或 △G*)相比甚小,可忽略不计,因此金属凝固时的形核率常按下式作简化计算 ,即N均?C0exp???

?kT?试计算液体Cu在过冷度为 180K, 200K和 220K时的均匀形核率。并将计算结果与图 6-4b比较。 (已知 Lm=1.88×109J·m-3,Tm=1356K,γSL=0.177 J·m -2 C0 = 6 × 1028原子·m-3, k=1.38×10-23J·k) 解:

323316??TLm?T16??16??SL*SLSLm?GV?? ?G均 ???222Lm?T23L?TTm3(?GV)m3()Tm180K: ?G?*均316??SLTm23L2?T2m16?3.14?0.1773?13562?18 ??1.4911?109223?(1.88?10)?180*??G均?1.4911?10?1828)?7.50?10?12 N均?C0exp????6?10exp(??231.38?10?(1356?180)?kT?200K: ?G?*均316??SLTm23L2?T2m16?3.14?0.1773?13562?18 ??1.2078?109223?(1.88?10)?200*??G均?1.2078?10?1828 N均?C0exp??)?7.89?10?5 ??6?10exp(??231.38?10?(1356?200)?kT?316??SLTm216?3.14?0.1773?13562*220K: ?G均???9.9817?10?19 229223Lm?T3?(1.88?10)?220*??G均?9.9817?10?1928 N均?C0exp??)?13.36 ??6?10exp(??23kT1.38?10?(1356?220)??与图6-4b相比,结果吻合,表明只有过冷度达到一定程度,使凝固温度接近有效成核温度时,形核率才会急剧增加。

3.试对图 6-9所示三种类型材料的生长速率给予定性解释。

4.本章在讨论固溶体合金凝固时,引用了平衡分配系数和局部平衡的概念,并说明了实际合金的凝固处在图 6-16中曲线 2和曲线 3这两个极端情况之间。为了研究实际合金的凝固,有人提出有效分配系数ke, k。定义为 k,= (CS), /(CL)B,即界面上的固相体积浓度(Cs);;与液相的整体平均成分(CI-)。之比。

1)试说明由于液相混合均匀程度的不同,k。在k。与 1之间变化。较慢凝固时k,-ko,快速凝固时k,-1, 2)画出 ke=ko, k,=1 和 ko

5.某二元合金相图如图6-45所示。今将含WB40%的合金置于长度为 I,的长瓷舟中并保持为液态,并从一端缓慢地凝固。温度梯度大到足以使液一固界面保持平直,同时液相成分能完全均匀混合。

1)试问这个合金的k。和 k。是多少?

2)该试样在何位置 (以端部距离计)出现共晶体?画出此时的溶质分布曲线。

3)若为完全平衡凝固,试样共晶体的百分数是多少? 4)如合金成分为含wu 5 ,问 2), 3)的答案如何?

5)假设用含wa5%的合金作成一个大铸件,如将铸件剖开,问有无可能观察到共晶体?

6.仍用上题的合金相图,如合金含二elooo,也浇成长棒 自一端缓慢凝固,其溶质分布为XS=koxo(1- f)'“一‘(等同于式(6-28)),式中 f为凝固的长度百分数,Xs, x。为摩尔分数。 1)证明当凝固百分数为f时,固相的平均成分为

2)在凝固过程中,由于液相中的溶质含量增高会降低合金的凝固温度,证明液相的凝固温 度 T(与已凝固试样的分数f之间的关系为

式中,T、为纯溶剂组元A的熔点,m,为液相线的斜率。 3)在图上画出凝固温度为 7500C, 7000C, 6000C, 5000C时的固相平均成分二So 7.参考 Cu-Zn(图6-46)和Cu-Sn合金相图 (图 5-44),试对比Cu-30Zn和 Cu-IOSn合金在做铸件时:

1)哪种合金的疏松倾向较严重? 2)哪种合金含有第二相的可能性大? 3)哪种合金的反偏析倾向大?

8.说明成分过冷在理论上和实际生产中的意义。 9.说明杂质对共晶生长的影响。

10.比较普通铸造、连续铸造和熔化焊这三种凝固过程及其组织。

第七章

1.钢的渗碳有时在870℃ 而不是在 927℃ 下进行,因

为在较低的温度下容易保证获得细晶粒。试问在 870℃下渗碳要多少时间才能得到相当于在 927℃下10h的渗层深度?

(渗碳时选用的钢材相同,炉内渗碳气氛相同。关于碳在γ-Fe中的扩散数据可查表 7-4) 解:根据Fick第二定律

c?cs?(cs?c0)erf(x927?x870D927t927D870t870x2Dt)

在渗层深度相同时,在该深度的碳浓度为一定值,则

?112?140000m/s D927?2?10?5?exp8.31?1200?1.599?10 D870?2?10?5?exp(?140000x927?x870,t927?10hr t870?D927t927D870)?7.939?10?12m2/s

8.31?11431.599?10?11??10hr?20.14hr ?127.939?102.今有小量的放射性Au‘沉积在金试样的一端,在高温下保持 24h后将试样切割成薄层,距放射源不同距离测量相应

位置的放谢性强度,其数据如下: 距离放射源位置小m 10 20 30 40 50 相对放射强度 83.8 66.4 42.0 23.6 8.74 求 Au的扩散系数。

(这是测定物质扩散系数的一种常用方法。沉积的放射性 Au‘总量是恒定的,各个位置的放射强度与其所含的放射性 Au’原子数成正比)

3.自扩散与空位扩散有何关系?为什么自扩散系数公式 (7-18)要比空位扩散系数 公·小得多?(Dv=Dlnv, n:为空位的平衡浓度)

4-1)为什么晶界扩散和体扩散 (或点阵扩散)对扩散的相对贡献为D,,81D,d? (D,- D,分别为晶界和点阵扩散系数,8, d分别为晶界厚度和晶粒直径。为简单计,将晶粒设想为一立方体,试用菲克第一定律写出此关系)

2)利用表7-4给出的Ag的晶界扩散和体扩散数据,如晶界厚度为 。. 5nm, Ag的晶粒尺寸d=IOzpm,试问晶界扩散在 927℃ 和 727℃ 能否觉察出来?(假定实验误差在士,%) 5.假定第二相 p自母相 a中形核,形核位置可能有两种情形 (图 7-46),则;1)试证明俘相无论是在晶内以球状形核,还是在晶界以双球冠状形核,

其晶核临界半径 Yk和临界晶核形成功 △Gk均为 (这说明晶核临界半径 rk与临界体积 Vk均与晶核形状无关)

2)当两面角 8-120“时,卩是首先在晶内还是在晶界上形核?什么情况下 归相会首先在晶内 形核?

6.对铝合金,形成 e-相的点阵错配度约 100, 0\相呈盘状,厚度约 20人,其应变能计算书中已给出,试计算 00相生长厚度为多少时共格就会遭到破坏?(E=7X 10\,非共格界面能为500 X 10-'J/cm')

7.新相的长大为什么会有扩散控制长大和界面控制长大两种类型?什么情况下晶体的长大是由界面控制或界面反应决定的?能否找到一种实验方法来确定某新相的长大是由界面反应决定 的? 8.调幅分解反应和一般的形核长大机制有何不同?

答:调幅分解反应不需要形核,新相成分变化、结构不变,界面宽泛(初期无明显分界面),组织均匀规则,原子扩散为上坡扩散,形核转变率高;形核过程不需克服能垒,但长大需要克服梯度能和表面能; 一般的形核长大需要形核,新相成分、结构均发生变化,界面明晰,组织均匀性差、不规则,原子扩散为下坡扩散,形核转变率低。形核、长大均需克服能垒。

联系合同范文客服:xxxxx#qq.com(#替换为@)