OFDM通信系统中信道估计研究

发布时间 : 星期日 文章OFDM通信系统中信道估计研究更新完毕开始阅读

OFDM通信系统中信道估计研究

个方面的提升。尤其是数据的传输速率方面。目前,我国的4G网络也已经开始运营,但是由于还是起始阶段许多技术都尚未成熟,因此也产生了一些意外问题。这些问题都还需人们继续研究探讨使其完善。

对于OFDM而言,在19世纪以前频分复用(FDM)就已经被用分割带宽来传送低速信号(如:电报)。随后为了提高频谱的利用率1950年左右提出了可以在存在多径衰落的高频无线信道中传输数据的Kineplex系统。之后人们有通过使用离散傅里叶变换(DFT)对其系基带进行调制和解调。最后又引入了保护间隔和循环前缀来使减小干扰。在1985年的时候OFDM技术被使用到了蜂窝移动通信系统中,使得无线通信系统飞速发展。

OFDM 信道估计技术可以分为两大类:基于导频辅助的信道估计方法、信道盲估计方法。

基于导频辅助的信道估计的思想是,发送端在OFDM符号固定位置插入导频,接收端利用接收导频与已知的发送导频之间的关系估计信道响应。

为了解决插入导频符号时导频数量及导频插入位置的选择问题,Negi 通过理论证明及实验仿真[2],得出以下结论:在不存在噪声的情况下,在N个子载波中插入大于等于信道冲击响应长度L的导频符号,即可利用这些导频符号恢复出信道冲击响应函数;系统中存在加性高斯白噪声影响时,为得到信道的 MMSE估计,应将导频符号均匀地分散到OFDM符号中;在快时变信道条件下,每一个OFDM符号中使用部分子信道插入导频的方法性能要优于将导频符号集中插入部分OFDM符号的方法。

基于导频信道估计的核心是导频处信道响应的估计问题,即如何有效地从导频处的接收数据和已知的导频符号恢复出导频位置的信道信息H。1995 年,Beek 提出了基于最小平方(LS)准则和基于最小均方误差(MMSE)准则的信道估计算法[3]。LS算法实现简单,事先不需要知道信道的统计信息,但是,由于忽略了噪声的影响,LS算法抗噪性能差;在相同均方误差条件下,MMSE 算法较LS算法有10-15dB的性能增益,但是MMSE方法计算量巨大,实现十分复杂。针对LS算法抗噪性能差的缺点,X.Wang提出了一种结合小波降噪技术与LS算法的信道估计方法,消除了部分噪声影响,改善了LS算法的性能[4]。Edfors等利用奇异值分解的方法,得到一种低阶近似线性最小均方误差(LMMSE)信道估计器,计算复杂度较MMSE算法大为降低[5]。Y.Li的改进思路是从训练序列考虑的,如果导频位置的训练序列采用该文献中提出特殊的结构,那么Q矩阵将是一个对角矩阵,对Q矩阵的求逆过程将变得更加简单[6]。李悦等人研究了OFDM系统中基于导频辅助的信道低秩估计方法,利用信道的频域和/或时域相关性以及奇异值分解技术,提出了一种秩的估计和自适应跟踪

3

OFDM通信系统中信道估计研究

方法[7]。

鉴于传统算法LS准则、MMSE准则信道估计性能和计算复杂度之间的矛盾,Ma等提出一种新的信道估计方法——EM(Expectation-Maximization)迭代算法[8]。这种方法将导频处的信道冲击响应作为初始估计,通过迭代可以获得接近于最优估计的性能。Jain提出将EM与MMSE相结合,加快了算法的收敛速度[9];S.H.Nam将Quasi-Newton方法应用于EM算法中M-步骤寻找极值点的迭代过程,在估计性能几乎保持不变的情况下,进一步降低了EM算法的计算复杂度[10]。EM算法给人们提供了一个新的基于导频类信道估计的思路,可以通过改变迭代次数、收敛条件来控制算法计算量,是信道估计算法性能与计算复杂度之间的一个折中。

多径衰落信道通常会呈现稀疏性,因此可以将压缩感知技术应用在 OFDM 信道估计中。把信道响应h看成一个稀疏向量,找出h中非零元素的位置和大小,从而得到信道响应的估计,以此减少所需导频的数量[11-12]。

信道盲估计无需在发送数据中插入导频符号。根据是否利用发送信号的统计信息,可分为确定型盲估计和统计型盲估计两类。估计过程不利用发送信号的统计特性,或者在发送信号的统计特性未知的情况下进行的盲估计称为确定型盲估计;如果估计过程是基于统计特性的,则称为统计型盲估计。

确定型盲估计算法有最大似然算法、互相关法等。文献[13]提出一种基于最大似然准则的算法,利用一个OFDM符号,可以在没有导频的条件下,获得接近基于导频的LS估计方法的性能。Xu通过迭代求取不同子信道间接收信号的互相关并使之最小来得到信道响应的估计,在较高的信噪比下,能利用较少的符号数获得很好的性能[14]。

常见的统计型信道估计方法有直接型和基于子空间的统计型信道估计两种。另外,还有一类新兴的基于粒子滤波的信道估计方法。 直接型盲信道估计方法中比较具有代表性的是B.Muque于1999年提出的一种基于接收信号二阶统计特性的OFDM信道盲估计方法,它通过估计接收信号自相关矩阵,利用接收信号自相关矩阵与信道冲击响应之间的关系得到信道估计[15]。

基于子空间的统计型信道估计一直受到许多研究人员的关注,自二十世纪九十年代提出子空间盲信道估计思想以来,不断出现新的基于子空间的盲信道估计算法。

其基本原理是:观察数据空间的维数大于信号空间的维数,用未知参数矢量构造Toeplitz矩阵Hθ,估计接收信号的自相关矩阵Ryy并对其进行奇异值分解(SVD),可以求出信号和噪声子空间,利用噪声子空间与 Hθ的列组成的矢量空间的正交性,可以求出未知参数矢量θ,在单输入多输出(SIMO)系统的

4

OFDM通信系统中信道估计研究

信道盲估计中,未知参数θ包含实际信道的冲激响应的信息。

B.Muquest提出一种利用发送端加入循环前缀而引入的冗余来进行信道估计的子空间方法,无需改变OFDM系统结构就可以直接应用于现有的系统[16]。早期的子空间法盲估计大部分都是基于单输入单输出(SISO)系统考虑的,Shi提出一种同时适用于单输入单输出(SISO)和多输入单输出(MISO)系统的盲估计方法[17]。

2006年,Qin等首先将粒子滤波技术应用于OFDM信道估计[18],利用基于导频的LS方法估得信道响应作为例子滤波初始状态,然后利用粒子滤波方法得到信道响应概率分布函数。文献[19]采用混合重要性函数作为粒子滤波器的重要性函数,实现了信道响应、载频偏差和相位噪声的联合估计。

由于OFDM系统可以大大消除码间干扰和信道间的干扰并且可以高速的传输数据,因此OFDM系统被应用到多种衍生的信号传输系统和用来解决多种信号传输问题。

1.3 学位论文的研究内容

OFDM涉及很多技术,如同步技术、峰均比、信道编码、信道时变性、自适应技术以及一些其他相关技术。由于通信一方或双方往往不清楚信道情况,或者需要反馈获得信道知识导致过长通信时延,这就需要对通信信道进行估计。若通过信道估计得方法事先获得信道的频谱特性,将各个子信道上的接收信号与信道的频谱特性相除,即可实现接收信号的正确解调。

因此,在OFDM众多技术中,信道估计技术具有重要的地位。

本论文主要研究OFDM系统中的信道估计问题。在MATLAB平台上,通过编写代码实现OFDM系统的发送、调制、信道模拟、信号接收、解调以及误码率的计算,重点是信道估计部分的实现。进而利用算法和程序对信道估计进行基本分析,并在各种不同参数和环境下给出了仿真结果结果。全面阐释了信道估计在OFDM系统中的重要作用。

本文的组织结构如下:

第二章介绍了OFDM系统,给出了OFDM的调制解调原理、保护间隔、循环前缀、参数选择、过采样以及其优缺点,为后续章节提供了理论基础

第三章则是针对OFDM系统的信道估计,首先给出了基于训练序列的信道估计算法的基本原理,进而针对MATLAB平台实现了该算法的程序设计,给出了程序中的一系列恒定以及自定义参数、函数等,为第四章性能分析奠定基础。

5

OFDM通信系统中信道估计研究

第四章在第三章的基础上,利用程序对算法性能进行分析,通过设置不同参数来分析何种参数以及它们的变化对系统性能的影响,最后还与未进行信道估计的系统做了比对,体现了基于训练序列的OFDM信道估计算法的优越性。

6

联系合同范文客服:xxxxx#qq.com(#替换为@)