晶体管音频功放音质不好的原因及改进方法

发布时间 : 星期三 文章晶体管音频功放音质不好的原因及改进方法更新完毕开始阅读

差分晶体管功放的制作减小字体 增大字体 作者:佚名 来源:本站整理 发布时间:2010-08-24 17:47:01

本文介绍的功率放大器在输入级和电压放大级采用两级非对称结构的差分电路,放大线性好、频响宽,对温漂和电源波动影响抑制力强,音质甜美,韵味十足,值得一试。 一、电路原理简要分析

图1为本功率放大器的主放大电路,VT2、VT3构成输入级差分电路,VT1、LED1、R4、R9及C2组成输入级差分电路的恒流源电路。LED1正常发光时其正负端电压差恒定在1.8V~2V之间,噪声小于稳压二极管,常用于功放电路。其正负端的1.9V左右电压差作用于VT1发射结回路.使VT1射-集电流恒定在(1.9V~0.6V)/680Ω≈1.9mA。在VT2、VT3差分输入电路参数完全对称的情况下,流经VT2、VT3射-集的电流为1.9mA的一半即0.95mA。RP2改变VT2、VT3发射极的反馈电阻,使VT2、VT3的静态工作点发生正负对称变化,最终改变输出级中点的直流电位。 R7、R8上的电压降正常情况下为2.2kΩ×0.95mA≈2.1 V,作为电压放大级VT7、VT8差分电路的发射结偏置电压。流经VT7、VT8集-射的电流为(2.1 V~0.6V)/R13≈4.5mA。VT4、VT5构成VT7、VT8差分电压放大级的镜像电流源负载。VT6接成共基状态,作为VT7的负载电阻。

VT9、R12及RP3构成推动级、输出级的偏置电路,同时起到对末级功率管温度反馈控制作用。调节RP3可以改变VT9集-射之间的电压,进而改变推动级和输出级的静态偏置电流。另一方面,VT9与功率级对管VT12、VT13安装在同一块散热片上,起到对VT12、VT13温度的反馈控制作用,防止VT12、VT13温度过高导致输出电流过大而烧坏。温度反馈控制的原理是,当VT12、VT13输出电流增大,升温超标时VT9的集-射电流增加而集-射电压下降,从而减小了推动级和输出级的静态输出电流,将功率对管VT12、VT13的电流和温度控制在安全范围之内。

VT10、VT11构成推动级,其发射极电阻R19、R20上的直流电压降又作为功率输出级VT12、VT13的偏置电压,调节RP3可以改变VT12、VT13的静态输出电流。R26、C9及R27构成本机的交流反馈电路,整机的电压放大倍数为52倍(Av+=1+R26/R2 7=52)。反馈取出点选在推动级的对称中点,最大限度避免了扬声器对小信号输入级的影响,这与通常的将反馈点选在输出级对称中点的做法相比,音质改善比较明显,声场控制力加强,瞬态更优。

图2是功率放大器的电源及保护电路.在此只对保护电路作个简要介绍。保护电路具有开机延时及功率输出级中点直流过压保护的功能。刚开机时,右声道A点12V的保护电路供电电压经R31、R33向C17充电,此时VT16基极电压低,处于截止状态,并导致D7、VT17截止,继电器K1在开机瞬间不吸合,避开浪涌电流对扬声器的冲击。随着时间的推移,C17充电到一定程度VT16饱和导通,导致VT17也饱和导通,继电器K1吸合,完成开机延时过程。

当左、右声道功率输出级对称中点(图1中A点)出现超标的正或负直流电压时,将导致VT14或VT15导通,C17沿导通管放电使VT16截止,继电器释放,以保护扬声器不被

超标直流电压烧坏。C15、C16正负相接变成无极性电容,可正、反充电,同时避免保护电路对短暂超标电压的误动作。

二、元件挑选与制作调试

制作之前元件一定要经过精心挑选。RP2、RP3使用多圈精密电位器,R5、R6和VT2、VT3等成对使用的元件,相互误差应控制到最小,只有这样才能减少调试时出现的问题,增加制作成功的几率。

制作调试可分块进行,先焊接好第一级差分电路(R2~R9、VT1~VT3),将RP2调节到中间位置,输入端接地并用100kΩ电阻将VT3基极接地,测量R7、R8上的直流压降应为2.1 V左右。焊接第二级差分电路(VT4~VT9)即R15、R16左边的电路,测量R10、R11、R13和R14上的电压各为1.45V,同时,调节RP3,VT9的集射电压可在一定范围内变化,这样前两级电路工作基本正常。

接下来,焊接推动级,撤掉VT3基极100 k对地电阻,接上反馈支路,进行两个重要的调试。调节RP3使VT9集射电压为2.5 V左右,将推动级VT10、VT11输出电流确定在6.35mA左右,R19、R20上的电压降各为0.64V。调节RP2用数字万用表的直流毫伏挡测量推动级对称中点(即R19、R20连接处)电压,将该电压控制在±5mV以内。

接上功率输出级,微调RP3将VT12、VT13静态电流调到80mA,R23、R24上的电压降各为17.6mV。测量功率输出级对称中点(即R23、R24连接处)的直流电压,如果VT12、VT13对称性不好则该点电压静态时可能不为零,同样调节RP2将该点电压控制在±5mV以内。至此,整机制作基本成功.接下来就是加音源试听调试了,有条件的话可以用示波器观测整机的波形及频带宽度。 三、整机性能及技术指标

整机背景宁静,声场开阔,高、低频响应很好,音质甜美,韵感十足。 实测性能指标如下:

通频带:10Hz~230 kHz(-3dB) 转换速率:20V/1us

标准输出功率:45W×2(8Ω)

最大不失真输出功率:72W×2(8Ω)

(录入编辑:电路图网dzdlt) 湖南省阳光电子技术学校常年面向全国招生(http://www.hnygpx.com 报名电话:4006-71-4008)。百分百安置就业。颁发全国通用权威证书:《中华人民共和国职业资格证》 、《电工证》 、《焊工证》 。采用我校多年来独创的“模块教学法”,理论与实践相结合、原理+图纸+机器三位一体的教学模式,半天理论,半天实践,通俗易懂,确保无任何基础者也能全面掌握维修技能、成为同行业中的佼佼者。包教包会包工作(一期不会,免费学会为止)。

★★★★★本文来自:湖南阳光电子技术学校--常年开设:手机维修培训、家电维修培训、电脑维修培训、网络工程师培训、电工培训、焊工培训----面向全国招生。报名电话:0731-85579057。百分百安置就业。颁发全国通用权威证书。(http://www.hnygpx.com)[详细地址]:http://www.hnygpx.net/xinyun4/article/html/3845.html

谈谈音频功放失真及常见改善方法

发布时间:2009-05-12 来源:厂商 打印该页

音频功放失真是指重放音频信号波形畸变的现象,通常分为电失真和声失真两大类。电失真就是信号电流在放大过程中产生了失真,而声失真是信号电流通过扬声器,扬声器未能如实地重现声音。

无论是电失真还是声失真,按失真的性质来分,主要有频率失真和非线性失真两种。其中,引起信号各频率分量间幅度和相位的关系变化,仅出现波形失真,不增加新的频率成分,属于线性失真。而谐波失真(THD)、互调失真(IMD)等可产生新的频率成分,或各频率分量的调制产物,这些多余产物与原信号极不和谐,引起声音畸变,粗糙刺耳,这些失真属于非线性失真。在这里,分别对谐波失真、互调失真、瞬态互调失真(TIM)、交流接口失真(IHM)等加以讨论。 1.谐波失真

谐波失真是由功放中的非线性元器件引起的一种失真。这种失真使音频信号产生许多新的谐波成分,叠加在原信号上,形成了波形失真的信号。将各谐波引起的失真叠加起来,就是总谐波失真度,其值常用输出信号中的所有谐波均方根值与基波电压有效值之比的百分数来表示。在这里,基波信号就是输入信号,所有谐波信号为由非线性失真引入的各次谐波信号。显然,该百分数越小,谐波失真越小,电路性能越好。目前,Hi-Fi功放的谐波失真一般控制在0.05%以下,许多优质功放的谐波失真已小于0.01%,而专业级音频功放的谐波失真度一般控制在0.03%以下。事实上,当总谐波失真度小于0.1%时,人耳就很难分辨了。另需说明的是,对于一台指定的音频功放而言,例如,某音频功放的总谐波失真指标表示为THD<0.009%(1W)。初看起来,似乎总谐波失真很小,但它只是在输出功率为1W时的总谐波失真,这与在有关标准要求的测量条件下所得的总谐波失真值是不同的。所以,在标明音频功放的总谐波失真指标时,一般都会注明测量条件。

众所周知,人的听觉系统是极其复杂的,有时谐波失真小的功放不如谐波失真大的耐听,这种现象的原因是多方面的。其中,与各次谐波成分对音质的影响程度不同有直接关系。尽管石机与胆机的稳态测试数据相同,但人们总觉得胆机的低音醇厚激荡、中音明亮圆润、高音纤细清澈,极为耐听;石机则低频强劲有力,中高频通透明亮,但高频发毛,声音生硬,音色偏冷。经频谱分析发现,石机含有大量的奇次谐波,奇次谐波给人耳造成刺耳难听的感觉;胆机则含有丰富的偶次谐波,而人耳对偶次谐波不敏感。此外,人耳对偶次谐波失真分辨力较低,对高次谐波却非常敏感,这也是上述现象的重要原因之一。 降低谐波失真的办法主要有:

1)施加适量的电压负反馈或电流负反馈;2)选用fT高、NF小、线性好的放大元器件;3)尽可能地提高各单元电路中对管的一致性;4)采用甲类放大方式,选用优秀的电路程式;5)提高电源的功率储备,改善电源的滤波性能。 2.互调失真

两种或多种不同频率的信号通过放大器后或扬声器发声时互相调制而产生了和频与差频以及各次谐波组合产生了和频与差频信号,这些新增加的频率成分构成的非线性失真称为互调失真。通常,将两个振幅按一定比例(多取4:1)的高低频信号,混合进入电路,新产生的非线性信号的均方根值与原较高频率信号的振幅之比的百分数来量度互调失真,即互调失真的大小,可用互调产物电平与额定信号电平的百分比来表示。

此值越大,互调失真越大。显然,互调失真度的大小与输出功率有关。由于新产生的这些频率成分与原信号没有相似性,因而较小的互调失真也很容易被人耳觉察到,听起来感到又尖、又刺耳,且伴有“声染色”现象。也就是说,互调失真带来的影响,会使整个重放系统的声场缺乏层次感,清晰度下降。在Hi-Fi功放中,总希望互调失真度越小越好,要做到这一点是非常困难的,因而高保真功放要求该值小于0.1%即可。当然,石机与胆机相比,前者的互调失真要大一些,这也是为什么石机的音色不及胆机甜美的一个原因。 减小互调失真的方法,常见的有:

1)采用电子分频方式,限制放大电路或扬声器的工作带宽;2)在音频功放的输入端增设高通滤波器,消除次低

联系合同范文客服:xxxxx#qq.com(#替换为@)