生物化学考试辅导资料1

发布时间 : 星期日 文章生物化学考试辅导资料1更新完毕开始阅读

最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息

2软脂酸的合成过程(见原书)

乙酰CoA羧化酶是脂酸合成的限速酶,存在于胞液中,辅基为生物素。柠檬酸、异柠檬酸是其变构激活剂,故在饱食后,糖代谢旺盛,代谢过程中的柠檬酸可别构激活此酶促进脂肪酸的合成,而软脂酰CoA是其变构抑制剂,降低脂肪酸合成。此酶也有共价修饰调节,胰高血糖素通过共价修饰抑制其活性。 ②从乙酰CoA和丙二酰CoA合成长链脂肪酸,实际上是一个重复加长过程,每次延长2个碳原子,由脂肪酸合成多酶体系催化。哺乳动物中,具有活性的酶是一二聚体,此二聚体解聚则活性丧失。每一亚基皆有ACP及辅基构成,合成过程中,脂酰基即连在辅基上。丁酰是脂酸合成酶催化第一轮产物,通过第一轮乙酰CoA和丙二酰CoA之间缩合、还原、脱水、还原等步骤,C原子增加2个,此后再以丙二酰CoA为碳源继续前述反应,每次增加2个C原子,经过7次循环之后,即可生成16个碳原子的软脂酸。 3酸碳链的加长。

碳链延长在肝细胞的内质网或线粒体中进行,在软脂酸的基础上,生成更长碳链的脂肪酸。 4脂肪酸合成的调节(过程见原书) 胰岛素诱导乙酰CoA羧化酶、脂肪酸合成酶的合成,促进脂肪酸合成,还能促使脂肪酸进入脂肪组织,加速合成脂肪。而胰高血糖素、肾上腺素、生长素抑制脂肪酸合成。 (七)多不饱和脂肪酸的重要衍生物。

前列腺素、血栓素、白三烯均由多不饱和脂肪酸衍生而来,在调节细胞代谢上具有重要作用,与炎症、免疫、过敏及心血管疾病等重要病理过程有关。在激素或其他因素刺激下,膜脂由磷脂酶A2催化水解,释放花生四烯酸,花生四烯酸在脂过氧化酶作用下生成丙三烯,在环过氧化酶作用下生成前列腺素、血栓素。

四、磷脂的代谢

含磷酸的脂类称磷脂可分为两类:由甘油构成的磷脂称甘油磷脂,由鞘氨醇构成的称鞘磷脂。 (一)甘油磷脂的代谢

甘油磷脂由1分子甘油与2分子脂肪酸和1分子磷酸组成,2位上常连的脂酸是花生四烯酸,由于与磷酸相连的取代基团不同,又可分为磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、二磷脂酰甘油(心磷脂)等。

1甘油磷脂的合成 ①合成部位及原料

全身各组织均能合成,以肝、肾等组织最活跃,在细胞的内质网上合成。合成所用的甘油、脂肪酸主要用糖代谢转化而来。其二位的多不饱和脂肪酸常需靠食物供给,合成还需ATP、CTP。 ②合成过程

磷脂酸是各种甘油磷脂合成的前体,主要有两种合成途径:

1″甘油二酯合成途径:脑磷脂、卵磷脂由此途径合成,以甘油二酯为中间产物,由CDP胆碱等提供磷酸及取代基。

2″CDP-甘油二酯途径:肌醇磷脂,心磷脂由此合成,以CDP-甘油二酯为中间产物再加上肌醇等取代基即可合成。

2甘油磷脂的降解

主要是体内磷脂酶催化的水解过程。其中磷脂酶A2能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂及不饱和脂肪酸,此脂肪酸多为花生四烯酸,Ca2+为此酶的激活剂。此溶血磷脂是一类较强的表面活性物质,能使细胞膜破坏引起溶血或细胞坏死。再经溶血磷脂酶继续水解后,即失去溶解细胞膜的作用。

(二)鞘磷脂的代谢

主要结构为鞘氨醇,1分子鞘氨醇通常只连1分子脂肪酸,二者以酰胺链相连,而非酯键。再加上1分子含磷酸的基团或糖基,前者与鞘氨醇以酯键相连成鞘磷脂,后者以β糖苷键相连成鞘糖脂,含量最多的神经鞘磷脂即是以磷酸胆碱,脂肪酸与鞘氨醇结合而成。 1合成代谢

以脑组织最活跃,主要在内质网进行。反应过程需磷酸呲哆醛,NADPH+H+等辅酶,基本原料为软脂酰CoA及丝氨酸。 2降解代谢

由神经鞘磷脂酶(属磷脂酶C类)作用,使磷酸酯键水解产生磷酸胆碱及神经酰胺(N-脂酰鞘氨醇)。若缺乏此酶,可引起痴呆等鞘磷脂沉积病。 五、胆固醇的代谢 (一)合成代谢

1.几乎全身各组织均可合成,肝是主要场所,合成主要在胞液及内质网中进行。

2.合成原料乙酰CoA是合成胆固醇的原料,因为乙酰CoA是在线粒体中产生,与前述脂肪酸合成相似,它须通过柠檬酸——丙酮酸循环进入胞液,另外,反应还需大量的NADPH+H+及ATP。合成1分子胆固醇需18分子乙酰CoA、36分子ATP及16分子NADPH+H+。乙酰CoA及ATP多来自线粒体中糖的有氧氧化,而NADPH则主要来自胞液中糖的磷酸戊糖途径。 3合成过程

简单来说,可划分为三个阶段。

最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息25

最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息

①甲羟戊酸(MVA)的合成:首先在胞液中合成HMGCoA,与酮体生成HMGCoA的生成过程相同。但在线粒体中,HMGCoA在HMGCoA裂解酶催化下生成酮体,而在胞液中生成的HMGCoA则在内质网HMGCoA还原酶的催化下,由NADPH+H+供氢,还原生成MVA。HMGCoA还原酶是合成胆固醇的限速酶。

②鲨烯的合成:MVA由ATP供能,在一系列酶催化下,生成3OC的鲨烯。 ③胆固醇的合成:鲨烯经多步反应,脱去3个甲基生成27C的胆固醇。 4.调节

HMGCoA还原酶是胆固醇合成的限速酶。多种因素对胆固醇的调节主要是通过对此酶活性的影响来实现的。

②胆固醇:可反馈抑制胆固醇的合成。

③激素:胰岛素能诱导HMGCoA还原酶的合成,增加胆固醇的合成,胰高血糖素及皮质醇正相反。 (二)胆固醇的转化

1转化为胆汁酸,这是胆固醇在体内代谢的主要去路。

2转化为固醇类激素,胆固醇是肾上腺皮质、卵巢等合成类固醇激素的原料,此种激素包括糖皮质激素及性激素。

3转化为7-脱氢胆固醇,在皮肤,胆固醇被氧化为7-脱氢胆固醇,再经紫外光照射转变为VitD3。 六、血浆脂蛋白代谢 (一)血浆脂蛋白分类

1电泳法:可将脂蛋白分为前β、β脂蛋白及乳糜微粒(CM)。

2超速离心法:分为乳糜微粒、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)分别相当于电泳分离的CM、前β、β、α-脂蛋白。 (二)血浆脂蛋白组成

血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。游离脂肪酸与清蛋白结合而运输不属于血浆脂蛋白之列。CM最大,含甘油三酯最多,蛋白质最少,故密度最小。VLDL含甘油三酯亦多,但其蛋白质含量高于CM。LDL含胆固醇及胆固醇酯最多。HDL含蛋白质量最多。 (三)脂蛋白的结构

血浆各种脂蛋白具有大致相似的基本结构。疏水性较强的甘油三酯及胆固醇酯位于脂蛋白的内核,而载脂蛋白、磷脂及游离胆固醇等双性分子则以单分子层覆盖于脂蛋白表面,其非极性向朝内,与内部疏水性内核相连,其极性基团朝外,脂蛋白分子呈球状。CM及VLDL主要以甘油三酯为内核,LDL及HDL则主要以胆固醇酯为内核。因脂蛋白分子朝向表面的极性基团亲水,故增加了脂蛋白颗粒的亲水性,使其能均匀分散在血液中。从CM到HDL,直径越来越小,故外层所占比例增加,所以HDL含载脂蛋白,磷脂最高。

(四)载脂蛋白

脂蛋白中的蛋白质部分称载脂蛋白,主要有apoA、B、C、D、E五类。不同脂蛋白含不同的载脂蛋白。载脂蛋白是双性分子,疏水性氨基酸组成非极性面,亲水性氨基酸为极性面,以其非极性面与疏水性的脂类核心相连,使脂蛋白的结构更稳定。 (五)代谢

1乳糜微粒

主要功能是转运外源性甘油三酯及胆固醇。空腹血中不含CM。外源性甘油三酯消化吸收后, 在小肠粘膜细胞内再合成甘油三酯、胆固醇,与载脂蛋白形成CM,经淋巴入血运送到肝外组 织中,在脂蛋白脂肪酶作用下,甘油三酯被水解,产物被肝外组织利用,CM残粒被肝摄取利 用。

2极低密度脂蛋白

VLDL是运输内源性甘油三酯的主要形式。肝细胞及小肠粘膜细胞自身合成的甘油三酯与载脂 蛋白,胆固醇等形成VLDL,分泌入血,在肝外组织脂肪酶作用下水解利用,水解过程中VLDL 与HDL相互交换,VLDL变成IDL被肝摄取代谢,未被摄取的IDL继续变为LDL。 3低密度脂蛋白

人血浆中的LDL是由VLDL转变而来的,它是转运肝合成的内源性胆固醇的主要形式。肝是降 解LDL的主要器官,肝及其他组织细胞膜表面存在LDL受体,可摄取LDL,其中的胆固醇脂水 解为游离胆固醇及脂肪酸,水解的游离胆固醇可抑制细胞本身胆固醇合成,减少细胞对LDL 的进一步摄取,且促使游离胆固醇酯化在胞液中储存,此反应是在内质网脂酰CoA胆固醇脂 酰转移酶(ACAT)催化下进行的。

除LDL受体途径外,血浆中的LDL还可被单核吞噬细胞系统清除。 4高密度脂蛋白

主要作用是逆向转运胆固醇,将胆固醇从肝外组织转运到肝代谢。新生HDL释放入血后径系 列转化,将体内胆固醇及其酯不断从CM、VLDL转入HDL,这其中起主要作用的是血浆卵磷脂

最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息26

最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息

胆固醇脂酰转移酶(LCAT),最后新生HDL变为成熟HDL,成熟HDL与肝细胞膜HDL受体结合被摄 取,其中的胆固醇合成胆汁酸或通过胆汁排出体外,如此可将外周组织中衰老细胞膜中的胆 固醇转运至肝代谢并排出体外。 (六)高脂血症

血脂高于正常人上限即为高脂血症,表现为甘油三脂、胆固醇含量升高,表现在脂蛋白上, CM、VLDL、LDL皆可升高,但HDL一般不增加。 DNA复制

一、DNA的复制的特征 1.半保留复制

在DNA复制时,亲代的每一条链均可作为模板合成一条新链。一条来自亲代的旧链与一条新链以氢键相连,形成子代双链DNA。由于两个子代分子中各有一条链来自亲代,而另一条链是新生成的,所以这就是半保留复制方式。

2复制的起始点与方向 DNA分子复制时,在亲代分子的一个特定区域内双链打开,随之以双链为模板复制生成两个子代DNA双链分子。开始时,复制起始点呈现一叉形(或Y形),称为复制叉,随复制进行,复制叉向前移动。 (1)复制的起始点。

DNA复制要从DNA分子的特定部位开始,此特定部位称为复制起始点。在原核生物中复制起始点常位于染色体的一个特定部位,即只有一个起始点。 真核生物的染色体在几个特定部位进行DNA复制,有多个复制起点。

(2)复制的方向。 复制的方向可以有三种不同的机制。其一是从两个起始点开始,各以相反的单一方向生长出一条新链,形成两个复制叉。例如腺病毒DNA的复制,其二是从一个起始点开始,以同一方向生长出两条链,形成一个复制叉。其三是从两个起始点开始,沿两个相反的方向各生长出两条链,形成两个复制叉,这种方式最为常见,称为双向复制。 3.半不连续合成

DNA的双螺旋结构中的两条链是反向平行的,当复制开始解链时,亲代DNA分子中一条母链的方向为5′~3′,另一条母链的方向为3′~5′。DNA聚合酶只能催化5′~3′合成方向。在以3′~5′方向的母链为模板时,复制合成出一条5′~3′方向的前导链,前导链的前进方向与复制叉的行进方向一致,前导链的合成是连续进行的。而另一条母链仍以3′~5′方向作为模板,复制合成一条5′~3′方向的随从链,因此随从链会成方向是与复制叉的行进方向相反的。随从链的合成是不连续进行的,先合成许多片段,即冈崎片段。最后各段再连接成为一条长链。由于前导链的合成连续进行的,而随从链的合成是不连续进行的,所以从总体上看DNA的复制是半不连续复制。 ( 二)复制的过程和参与酶及因子

复制的过程分四个阶段。第一阶段,亲代DNA分子超螺旋的构象变化及双螺旋的解链,将复制的模板展现出来。第二阶段为复制的引发阶段,有引物RNA进行5′~3′方向的合成。第三阶段为DNA链的延长,在引物RNA合成基础上,进行DNA链的5′~3′方向合成,前导链连续地合成出一条长链,随从链合成出冈崎片段。去除RNA引物后,片段间形成了空隙,DNA聚合酶作用使各个片段靠近。在连接酶作用下,各片段连接成为一条长链。第四阶段为终止阶段,复制叉行进到一定部位就停止前进,最后前导链与随从链分别与各自的模板形成两个子代DNA分子,到此复制过程就完成了。 1螺旋的松弛与解链

包括超螺旋的构象变化及双螺旋的解链,参与者主要为拓扑异构酶、解链酶及单链结合蛋白等。 ( 1)拓扑异构酶。 拓扑异构酶可改变DNA拓扑性质。在DNA复制时,复制叉行进的前方DNA分子总是产生超螺旋,拓扑酶可松弛超螺旋,还可以引入负超螺旋,有利于复制叉的行进及DNA的合成。在复制完成后,拓扑酶又可将DNA分子引入超螺旋,有利于DNA缠绕、折叠、压缩以形成染色质。 DNA拓扑酶有多种,主要有Ⅰ型及Ⅱ型。 拓扑异构酶Ⅰ(Topo Ⅰ),将环状双链DNA的一条链切开一个口,切口处链的末端绕螺旋轴按照松弛超螺旋的方向转动,然后再将切口封起。拓扑酶I松弛超螺旋不需ATP参与。 拓扑异构酶Ⅱ(Topo Ⅱ),它的作用特点是切开环状双链DNA的两条链,分子中的断端经切口穿过而旋转,然后封闭切口。Topo Ⅱ在ATP参与下,将DNA分子从松弛状态转变为负超螺旋,为DNA分子解链后进行复制及转录作好准备。

(2)解链酶。 DNA复制进行时,首先要在复制起点处解开双链,反应是在一类解链酶的催化下进行的。解链酶要通过ATP的分解获得能量,以解开双链。

大部分的解链酶在复制叉的进行中连续地解开DNA双链,它们与随从链的模板相结合,沿着模板的5′→3′方向沿复制叉的进行而移动,例如解链酶Ⅱ、Ⅲ等。只有rep蛋白,(一种解链酶)是结合在前导链的模板上,沿模板的3′→5′方向移动,所以在DNA复制时,一些解链酶与rep蛋白可能是分别在两条DNA母链上协同发挥作用,以解开双链。

( 3)单链结合蛋白(SSB)。 单链结合蛋白与解开的DNA单链相结合,可稳定此单链以利于其发挥模板作用。SSB也与复制新生的DNA单链相结合,以保护其免于被核酸酶水解。 2引发

DNA复制开始时,先要有引发阶段,即有引物RNA的合成。前导链的引发较简单,在引发酶催化下,

最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息27

最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息

有一个短的RNA引物合成,继而从RNA引物的3′末端开始连续进行DNA链的合成。随从链的合成是不连续的,引发阶段也比较复杂,有多种蛋白及酶参与,主要的是引发酶及引发前体。 (1)引发酶。一种特殊的

RNA聚合酶,可催化RNA短片段的合成。RNA合成反应是以DNA为模板按碱基互补规律,加入核苷酸从5′→3′方向合成RNA片段,称为RNA引物。RNA引物的3′末端为游离的羟基。

(2)引发前体。引发前体包含有多种蛋白质因子。引发前体沿随从链的模板DNA顺复制叉的行进方向移动,它连续地与引发酶联合并解离,从而在不同部位引导引发酶催化合成RNA引物。这也为随从链的不连续合成准备了条件。

引发过程中合成了随从链的RNA引物,在引物3′-OH末端进行DNA片段的合成。

3DNA链的延长 DNA链的延长是在DNA聚合酶催化下,以四种三磷酸脱氧核苷为原料,进行的聚合作用。反应体系中有DNA模板、引物及Mg2+的存在。聚合作用是自引物的3′-OH端上开始,以5′→3′方向逐个加入脱氧核苷酸,使DNA链得以延长。 在原核生物及真核生物,DNA聚合酶有几种类型。 (1)大肠杆菌DNA聚合酶

1)DNA聚合酶Ⅰ。在随从链合成时,先合成了许多冈崎片段,而后由于RNA引物的去除形成了空隙,此时DNA PolⅠ它催化聚合反应,延长了各个片段,从而填补了片段间的间隙,使以上片段得以靠近,为片段连接成长链创造了条件。所以DNA polⅠ的聚合作用主要是在填补随从链片段间空隙上发挥作用。 DNA PolⅠ还具有3′→5′外切酶活性可识别并去除错误的碱基,然后再继续进行聚合作用。这种活性在DNA复制中起了编辑作用,校对功能。DNA PolⅠ的校对活性对DNA复制的准确性起着重要作用。 DNA PolⅠ还具有5′→3′外切酶活性。5′→3′外切酶活性也有修正错误的功能,补充其3′→5′外切酶修正错误的作用。例如紫外照射产生的嘧啶二聚体,就是在其5′→3′切酶作用下切除的。

2)DNA聚合酶Ⅱ。DNAPolⅡ具有催化5′→3′方向的DNA合成反应的活性。它也有3′→5′外切酶活性,而无5′→3′外切酶活性。它在体内的功能还不清楚,可能在损伤修复中有特殊作用。

3)DNA聚合酶Ⅲ。 DNA PolⅢ是一个由多种亚基组成,这些亚基组成两个亚单位而形成不对称的二聚体。DNAPolⅢ在DNA复制中链的延长上起主要的作用。

DNA PolⅢ结构中不对称的二聚体,同时分别催化着前导链和随从链的合成。 DNA PolⅢ也具有3′→5′外切酶活性,所以对于DNA复制也有校对的功能,可停止加入或除去错误的核苷酸然后继续加正确的核苷酸。因此,DNA PolⅢ配合DNAPolI可将复制的错误率大大地降低,从10-4降为10-6或更少。 当此片段接近前方的片段时,由DNA PolⅢ的5′→3′外切酶活性切除了RNA引物,造成了片段间的空间;继而DNA PolI催化进行5′→3′方向的聚合作用,填补了片段间的空隙。 下面小结:大肠杆菌中DNA聚合酶,见表。 PolⅠ PolⅡ PolⅢ 酶活性 + + + 5′→3′聚合作用 + + + 3′→5′外切酶活性 + + - 5′→3′外切酶活性 构成(亚基数) 体外链延长速度(核苷酸/分) 分子数/细胞 功能 单体 不详 多亚基 600 30 9000 400 不详 10~20 修复合成 不详 复制 去除引物 校对 填补空隙 校对 (2)真核生物DNA聚合酶。 真核生物DNA Pol有α、β、γ、δ及五种。 真核生物的DNA复制是在DNA聚合酶α与DNA聚合酶δ互配合下催化进行的,还有一些酶及蛋白质因子参与反应。DNA Polα与引发酶共同起引发作用,然后由DNA Polδ催化前导链及随从链的合成。在链的延长中,有 PCNA(增殖细胞核抗原)参与,保障连续性DNA Pol的性质与DNA Polδ有相似之处,在有些情况下,它可代替 DNA Polδ起作用,例如在DNA损伤时,催化修复合成。DNA Polγ是线粒体中DNA复制酶。

DNA Polδ及均有外切酶活性,因此也有编辑功能,校正复制中的错误。它们的5′→3′外切酶活性可能在切除引物RNA中有作用。

下面:小结真核生物DNA聚合酶,见表。 e 酶活性 α β γ δ + + + + + 5′→3′聚合作用 - - + + + 3′→5′外切作用 细胞内定位功能 核 核 线粒体 核 核 复制、引发 修复 复制 复制 复制 (3)连接酶 DNA复制过程中,经过了链延长阶段后,合成出的前导链为一条连续的长链。随从链则是由合成出许最新下载(NewDown.com.cn) 中国最大、最专业的学习资料下载站 转载请保留本信息28

联系合同范文客服:xxxxx#qq.com(#替换为@)