纳米材料的形貌控制 - 图文

发布时间 : 星期六 文章纳米材料的形貌控制 - 图文更新完毕开始阅读

ZnO,CdS,PbS,WO3,SnO2,ZnS,SrTiO3,In2O3等,其中TiO2纳米粒子不仅具有高的光催化活性,且耐酸碱和光化学腐蚀,是目前最具应用潜力的一种光催化剂。

1.3 纳米材料的应用

纳米微粒的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应等使它们在光、电、磁等发面都呈现出常规材料不具备的特性,因此,纳米微粒在生物医学材料、催化、传感、陶瓷、磁性材料和光电子材料等方面都有着广阔的应用前景。

首先,纳米材料在医学和生物学[7]上的广泛应用被认为有可能成为人类历史上的第三次产业革命。因纳米粒子的尺寸一般比生物体内的红血球、细胞小得多,因此可以利用纳米粒子进行细胞染色、细胞分离以及制成特殊药物剂型或新型药物抗体进行局部靶向治疗,科研人员已经成功利用SiO2纳米粒子进行定位病变治疗,以减少副作用。利用纳米颗粒作为载体的病毒诱导物也已经取得突破性进展,临床动物实验正在进行。还可以将纳米微粒制成纳米机器人,注入人体血管之中,对人体进行全面的健康检查、诊断,并实施特殊治疗,清除心脏动脉脂肪沉积物,疏通脑血管中的血栓,甚至可能吞掉病毒,杀死癌细胞等。

其次,除了生物医学领域,纳米材料还在其他许多方面具有广阔的应用前景

[8]

。如纳米粒子由于尺寸小,比表面积大,表面的键态和电子态与颗粒内部不同,

表面原子配位不足等原因导致其表面活性增加。利用纳米粒子的高比表面积和活性高的这种特性,可以显著提高反应的催化效率;纳米材料由于具有大的比表面积、高的表面活性以及与气体相互作用强等原因,其电学和光学输运性能可能随其吸附物质、所处环境的变化而变化,因此可以用作各种传感器如光、温度、湿度、气体传感等;纳米陶瓷的高矫顽力、高磁化率、低磁耗、低饱和磁矩将有望为高技术及新材料的发展,开拓材料应用的崭新领域发挥重要作用。

2 纳米材料的形貌及其影响因素

纳米材料的性能依赖于其粒子的形貌和尺寸。因此,对不同形貌纳米粒子形

5

成机理的研究至关重要,这是在制备纳米粒子过程中有效调控晶体形貌的有效手段之一。

根据晶体生长动力学原理,纳米晶粒会沿着具有最低能量的形状方向生长,然而,研究发现纳米粒子的形成过程是高度的动力学驱动过程。Burda等认为粒子的“成核”对形成各向异性的纳米粒子有决定性作用。在反应的初始阶段,晶核比纳米晶粒要小的多,初始晶核的化学势与晶核的大小密切相关,并且对晶核的结构非常敏感。因此在高反应浓度下,纳米晶核趋向于形成一维结构的粒子,这样的粒子具有亚稳定性;在低反应浓度下,纳米晶核会朝着具有最低化学势的形貌方向生长,最终将会导致零维纳米结构的形成,即球形纳米粒子,而中间浓度环境,则有助于纳米晶核的三维同性生长的纳米粒子。Khollam等认为纳米粒子的形成遵循粒子成核和粒子生长机制,即纳米粒子的形貌不仅会受到其成核的影响,还会受到其生长因素的影响。于文广等认为,除了成核以外,粒子的生长对粒子形貌也有较大的影响,即晶粒的生长环境对形成不同形貌的纳米粒子同样会起到至关重要的作用。即纳米粒子的形貌不仅取决于粒子的生长动力学,还取决于粒子的热动力学,尤其是粒子的表面自由能。纳米晶形貌尺寸有一下方面的影响因素。

2.1 表面活性剂的影响

表面活性剂常被作为纳米晶的稳定剂或引导剂,用于实现对纳米晶形貌和大小的控制合成,因为它们对形成具有不同形态结构的纳米晶起到重要作用。

Puntes等[9]通过使用油酸和三正辛基膦的混合表面活性剂实现了对金属Co纳米晶的形貌和尺寸控制合成。Murphyt[9]等以CTAB作为表面活性剂成功地合成了具有高长径比的单晶金纳米棒,并且研究认为金纳米晶的长径比依赖于水溶液中起引导作用的表面活性剂的种类和性质。Liu等[10]采用密封的高压反应釜,以微波加热的方法,以CTAB为表面活性剂,通过柠檬酸钠还原HAuCl制得了不同形貌的金纳米颗粒。

对CdSe纳米晶合成的研究表明,控制纳米晶形貌和尺寸的方法是:在体系中加入单一的表面活性剂,减少粒子的比表面积,从而获得均匀的球形CdSe纳

6

米晶;如果使用各种表面活性剂混合,由于各种活性剂对不同晶面生长速率的影响不同从而导致晶体的各向异性生长,生成了纳米棒;在以上两种情况下,如果将反应溶液快速混合,能够引发快速的非均相成核,可以得到尺寸分布很窄的纳米晶。因此,表面活性剂对晶体生长及形貌形成的影响主要在于表面活性剂在晶体不同晶面上的吸附作用和对晶面生长的影啊[11]。

2.2添加剂对形貌的控制

添加剂影响纳米材料形貌的主要原因在于:添加剂可以附着在晶体表面,影响晶体的成核和生长,从而控制氧化锌的形貌和尺寸。陈代荣[22]等人选择氯化锌做锌源,用氢氧化钠做沉淀剂制得白色沉淀干燥后为前驱体,然后将前驱体分散到去离子水中,并用盐酸调至合适的pH,再分别加入一定浓度的1.6-己二醇、六亚甲基胺、乙醇胺等,在一定温度下反应一定时间得到了棒状的、雪花状的、多面体形的氧化锌。

2.3 温度对纳米晶形貌的影响

文献表明,温度对纳米粒子形貌的影响不容忽视。郭奇花等[12]通过研究ZnO纳米颗粒的制备条件发现不同的温度能够改变纳米晶的形貌和排列,认为温度对纳米晶的形貌起控制作用。刘冬梅等[13]在制备HA的反应中发现,随着反应温度的升高,纳米HA的晶粒长大加剧,分散效果下降,因此可以通过温度来控制纳米HA的大小和分散。张艳峰等[14]在制备金红石型二氧化钛纳米晶的过程中发现,当反应温度较低时,成核及成长速率较慢;成核及成长速率随着反应温度的升高而加快;产物颗粒相应减小;但如果反应温度太高,由于成核速率超过晶粒成长速率,最终产物中形成针形颗粒与球形颗粒并存。印万忠等[15]通过对纳米氢氧化镁的研究,认为生成的纳米氢氧化镁颗粒的粒径随着反应温度的升高总体上呈现减小趋势,其形状逐渐变为片状、纤维状、针状等,而且温度越高,形状越混杂。除上述讨论的因素,反应体系的pH、官能团对羟基的置换作用、晶体生长模板等因素均对纳米晶的形貌和大小有影响,在制各纳米晶时可通过对这些条件的调控来实现纳米晶形貌的可控。

7

3 理论分析[17] 3.1 热力学分析

由热力学第二定律可知,在等温等压条件下,只有当新相的吉布斯自由能低于旧相的吉布斯自由能时,旧相才能自发地转变为新相,过程的吉布斯自由能变化为:

(1)

式中:HS和HL分别表示固态和液态物质的焓值;SS和SL分别表示固态和液态物质的熵值;△G为固相与液相吉布斯自由能的差值。只有△G为负值时,固相才是稳定相,相变自发进行,故称负值的AG为结晶驱动力。

在溶液结晶体系中,设溶液的饱和浓度为c0,在等温等压条件下,溶液浓度由c0增大至c1(c1为溶液的过饱和浓度),晶体处于这种溶液中就会生长。根据热力学基本原理可推导出,由浓度为c1的过饱和溶液中生成1 mol晶体时,体系的吉布斯自由能降低△μ:

(2)

式中:△μ为溶液体系的结晶驱动力。

3.2 动力学分析

关于晶体的生成,普遍的看法是将其分为2个相联的阶段;一是晶核和微晶的生成;二是晶核长大的阶段。一般地,晶核的形成速v形成有如下关系式:

(3)

式中:k为比例常数;c为析出溶质浓度;L为溶解度;P为过饱和度;P/L为比过饱和度。

8

联系合同范文客服:xxxxx#qq.com(#替换为@)