稀土元素介绍

发布时间 : 星期日 文章稀土元素介绍更新完毕开始阅读

镧系收缩有两个特点:

(1)它们的原子半径虽然随着原子序数的增加而缩小,但相邻元素原子半径之差只有1pm左右,即镧系内原子半径呈缓慢减少的趋势。原因是随着核电荷的增加,相应增加的电子是填入到倒数第三层的4f轨道(倒数第一层为6s,倒数第二层为5s、5p轨道)上,它比6s和5s、5p轨道对核电荷有较大的屏蔽作用,因此随着原子序数的增加,最外层电子受核的引力只是缓慢地增加,从而导致了原子半径呈缓慢缩小的趋势。

(2)随着原子序数的增加,相邻元素原子半径虽然只缩小约1pm,但是经过从La到Lu14种元素的原子半径递减的积累却减小了约14pm之多。

在镧系收缩中,为什么原子半径的收缩比离子半径的收缩小得多呢? 想想看?这是因为离子比金属原子少一电子层,电子失去最外层6s电子之后,4f轨道则处于倒数第二层(倒数第一层为5s、5p轨道),这种状态的4f轨道比原子中的4f轨道(倒数第三层)对核电荷的屏蔽作用小,从而使得离子半径的收缩效果比原子半径明显。

以镧系元素的原子序数为横坐标,原子半径值为纵坐标画图,可以得到一张Ln系原子半径与原子序数的关系图。

由图可以清楚看出,在原子半径总的收缩趋势中,铕和镱反常,它们的原子半径比相邻的元素的原子半径大很多,而铈的原子半径又比较小。这是因为在铕和镱的电子层结构中,分别有半充满的4f7和全充满的4f的缘故。这种结构比起4f电子层未充满的其它状态对原子核有较大的屏蔽作用。

这种半充满或全充满的电子层结构对原子核有较大的屏蔽作用,也表现在由Ln3+离子半径随原子序数减小的曲线变化中。由图Ln-2看,在图中Gd离子处出现了微小的但可以觉察的不连续性。这是因为Gd3+的电子层构型为4f7,由于它对原子核有较大的屏蔽作用,使得有效核电荷略有减小,所以使得Gd3+的离子半径减小的程度较小。这种效应叫做钆断效应。

镧系收缩是无机化学中的一个特殊而又重要的现象。镧系收缩的结果是什么呢?

①由于镧系收缩,使得第ⅢB族Y3+离子的半径(89.3pm)接近Tb3+和Dy3+的离子半径,因此钆在矿物中与镧系元素共生,成为稀土元素的成员。

Sc离子半径较小(73.2pm),接近Lu,其化学性质介于铝和镧系元素之间,有的书上不把它列入稀土元素。我们把Sc和Y都列为稀土元素的成员。

14

②镧系收缩使它后面各族过渡元素的原子半径和离子半径,分别与相应同族上面的一个元素的原子半径和离子半径极为接近,化学性质相似,造成了各对元素在分离上的困难。如下表所示。

离子的颜色

一些镧系金属三价离子具有很漂亮的不同颜色,这些颜色出现在它们的结晶盐中或水溶液中。从表Ln-5可以看出,若以Gd3+离子为中心,从La3+到Gd3+的颜色变化规律又在从Lu3+到的Gd3+的过程中重演,这就是Ln3+离子颜色的周期性变化。

离子的颜色通常与未成对电子数有关,由表Ln-5可见,当Ln具有4f和4f

3+

n

14-n

个电子时,它们的颜色是相同或相近的。

颜色的产是由于电子吸收了特定波长的光,相当于一定的电子跃迁。Ln3+1

的颜色主要是由4f亚层中f-f的电子跃迁引起的。Ln3+可以吸收从紫外、可见到红外光区的各种波长的电磁辐射。

表Ln-5.Ln3+离子在晶体或水溶液中的颜色

根据吸收光谱的研究指出:可见光的波长范围在400~760nm,具有f0和f14

结构的La和Lu在200~1000nm区域没有吸收光谱,所以它们的离子是无色的。这可能由于f0和f14构型比较稳定没有成单电子的缘故。具有f7、f1、f6、f8结构的Gd3+、Ce3+、Eu3+和Tb3+,其吸收峰全部或大部分在紫外区,所以离子是无色或略带淡粉红色。具有f13构型的Yb3+,其吸收峰在红外区,所以Yb3+也是无色的。剩下的Ln(具有f、f、f、f、f、f、f、f构型)在可见光区内有明显的吸收,所以它们的离子有颜色。由此可见,颜色的观念一般是以光谱中的可见区为限。有些离子是顺磁性的,有成单电子,应该有颜色,但实际上为无色,原因就是离子的吸收作用发生在可见区以外。

2

3

4

5

9

10

11

12

离子的磁性

镧系元素的磁性与d区过渡元素的磁性有根本的不同:d区过渡元素的磁矩主要是由未成对电子的自旋运动产生的,因为d轨道受晶体场的影响较大,轨道运动对磁矩的贡献被周围配位原子的电场抑制,几乎完全消失。而镧系元素,内层4f电子受晶体场的影响较小,因此,在计算磁矩时,既要考虑自旋运动的贡献,又要考虑轨道运动的贡献。

镧系元素原子中核外不成对电子数多,加上电子轨道磁矩对顺磁性的贡献,镧系元素可以作良好的磁性材料。稀土的合金可以作永磁材料。第一代永磁材料是AlNiCo,PtCo5;第二代是SmCo5、Sm2CO7,第三代是钕铁硼,性能越来越好。

标准电极电势

从表Ln-7中的标准电极电势数据可以看出:不管是在酸性介质还是碱性介质中的值都比较小,镧系金属在水溶液中容易形成+3价离子,是较强的还原剂。其还原能力仅次于碱金属和碱土金属。镧系金属是较活泼的金属。

从表中数据还可以看出,随着原子序数的增加,镧系金属的还原能力逐渐减弱。即金属的活泼性递减,镧系金属中镧最活泼。

金属单质

镧系元素是典型的金属元素,我们从 <1>物理性质 <2>化学性质 <3>用途 <4>制备

四个方面来介绍镧系金属单质。

物理性质

镧系金属一般比较软,但随着原子序数的增加而逐渐变硬,新切开的金属表面具有银白色的金属光泽。镧系金属具有延展性,但抗拉强度低。除了镱Yb由于具有4f全充满的电子构型而没有磁性外,其余镧系金属的顺磁性都相当强。钆Gd在298K以下是磁性的。

从表Ln-8中的数据可见,镧系金属的密度、熔点除Eu和Yb以外,基本上随着原子序数的增加而增加。Eu和Yb的密度、熔点比它们各自左右相邻的两种金属都小。这是由于它们具有4f半充满和4f全充满的电子构型,使屏蔽效应增大,有效核电苛降低,导致原子核对外层6s电子的吸引力减小,而使它们的原子半径突然增大,以致它们的原子半径与碱土金属的原子半径相近,例如: 由于这一原因,Eu和Yb的性质同Cu、Sr、Ba相近,它们都能溶于液氨形成深蓝色的溶液。

联系合同范文客服:xxxxx#qq.com(#替换为@)