太赫兹

发布时间 : 星期一 文章太赫兹更新完毕开始阅读

太赫兹波的产生与检测

自从20世纪60年代初激光问世以来,科学家一直对超短激光脉冲,超快过程及各种超快现象有浓厚的兴趣。经过多年的不懈努力,这些方面的技术研究已取得了很大进展。而超短激光脉冲的价值也因1999年诺贝尔化学奖授予科学家艾哈迈德·泽维尔教授而得到人们更深切的关注。另一方面除了激光脉冲,人们也发现,最早从核爆炸产生的强电磁(脉宽在纳秒量级)对电子设备有极强的破坏力,由此引发了人们超短电磁脉冲的研究兴趣。过去的几年中,该领域中的一门研究课题——太赫兹电磁脉冲的产生技术及应用受到了人们极大的关注。这是因为太赫兹电磁脉冲正是由超短激光脉冲选通半导体光导开关后产生的;另一方面这是其在很多领域都有相当重要的作用。

一.简介

太赫兹电磁脉冲或称为THz波(太赫兹波)或称为T射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。

二.发展历程

实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um(0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。

三.特点

太赫兹具有瞬态性、宽带性、相干性、低能性等独特性能,在宽带通信、雷达、电子对抗、电磁武器、天文学、医学成像、无损检测、安全检查等领域产生了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短,所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍在不断的开发研究当中,其广阔的科学前景为世界所公认。

太赫兹波的具体特点有:(1)高透射性:太赫兹对许多介电材料和非极性物质具有良好的穿透性,可对不透明物体进行透视成像,是X射线成像和超声波成像技术的有效互补,可用于安检或质检过程中的无损检测。

(2)低能量性:太赫兹光子能量为4.1meV(毫电子伏特),只是X射线光子能量的108分之一。太赫兹辐射不会导致光致电离而破坏被检物质,非常适用于针对人体或其他生物样品的活体检查。进而能方便地提取样品的折射率和吸收系数等信息。

(3)吸水性:水对太赫兹辐射有极强的吸收性,因为肿瘤组织中水分含量与正常组织明显不同,所以可通过分析组织中的水分含量来确定肿瘤的位置。

(4)瞬态性:太赫兹脉冲的典型脉宽在皮秒数量级,可以方便地对各种材料包括液体、气体、半导体、高温超导体、铁磁体等进行时间分辨光谱的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪声的干扰。

(5)相干性:太赫兹的相干性源于其相干产生机制。太赫兹相干测量技术能够直接测量电场的振幅和相位,从而方便地提取样品的折射率、吸收系数、消光系数、介电常数等光学参数。

(6)指纹光谱:太赫兹波段包含了丰富的物理和化学信息。大多数极性分子和生物大分子的振动和转能级跃迁都处在太赫兹波段,所以根据这些指纹谱,太赫兹光谱成像技术能够分辨物体的形貌,分析物体的物理化学性质,为缉毒、反恐、排爆等提供相关的理论依据和探测技术。

四.产生

THz波的产生分为连续波的THz产生和THz脉冲的产生。产生连续THz波的方法主要有4种:(1)通过FTIR(Fourier Transform Infrared Spectrometer)使用热辐射源产生,如汞灯和SiC棒;(2)是通过非线性光混频产生;(3)是通过电子振荡辐射产生,如反波管、耿式振荡器及肖特基二极管产生;(4)是通过气体激光器、半导体激光器、自由电子激光器等THz激光器直接产生。目前产生THz脉冲常用的方法有光导天线法、光整流法、THz参量振荡器法、空气等离子体法等,其中空气等离子体能产生相对较高强度的THz波而备受关注,此外,还可以用半导体表面产生THz波。

下面主要介绍:1)空气等离子体产生THz脉冲

Cook和Hochstrasser等人最早发现将频率为60的飞秒脉冲和频率为2o9的倍频光聚焦在空气中,将空气电离可产生THz[5]。该方法与之前的在晶体中进行光整流产生THz波相比,不存在损伤阈值的问题,即对激光的强度没有限制。空气中产生THz波有3种结构,如图所示。图(a)是将波长为800 RE或400nm,脉宽为100fs的激光脉冲聚焦到空气中产生等离子体,从而辐射THz波;而图(b)较之于图(a)则是在聚焦透镜后添加了一块BBO晶体用于倍频;图(c)是利用分色镜将波长为800nm和400nm(基频波与二次谐波)的两束光混合在一起,通过干涉相长或干涉相消对THz辐射进行相干控制。

空气产生Thz结构图

2)参量振荡器产生频率可调的THz波

光学参量振荡是产生THz辐射的另一机制,是基于光学参量效应的一种技术。THz参量源通常有THz参量发生器和THz参量振荡器两种,二者之问的区别在于TPO有谐振腔,而TPG没有这样的选频结构。THz参量源具有很高的非线性转换效率,其结构简单、易于小型化、工作可靠、便于操作、相干性好,并且能够实现单频、宽带、可调谐、可在室温下稳定运转的全固态THz辐射源。

2008年,Koji Suizu[6]等人利用KTP-OPO(双波长输出KTP光学参量振荡器)产生的两束波长相差不大的平行泵浦光在铌酸锂晶体中差频产生出THz波,在THz波的输出上利用了切伦科夫辐射的原理,如图所示。

众所周知,当晶体中极化波的速度大于辐射出的射线波的速度时就可以说其满足了切伦科夫的相位匹配条件。在铌酸锂晶体中,由两束泵浦光差频产生的THz波的波速(发出的瞬间具有泵浦光的速度)大于由THz引起的介质极化产生的次波辐射的波速(等于THz的速度),满足了切伦科夫辐射的相位匹配条件 ,从而以一定角度辐射出THz波。同时,因为聚乙烯膜很薄,可以和THz波的波长相比,所以可在聚乙烯膜上使用一组硅棱镜阵列来耦合THz波的输出,然后用硅测辐射热计来探测产生的连续宽频范围的THz波。

五.检测

THz的检测主要有:电光取样和空气探测 1 电光取样

电光取样测量技术基于线性电光效应:当THz脉冲通过电光晶体时,会发生电光效应,从而影响探测(取样)脉冲在晶体中的传播。当探测脉冲和THz脉冲同时通过电光晶体时,THz脉冲电场会导致晶体的折射率发生各向异性的改变,致使探测脉冲的偏振态发生变化。调整探测脉冲和THz脉冲之问的时间延迟,检测探测光在晶体中发生的偏振变化就可以得到THz脉冲电场的时域波形。

自由空间电光取样THz探测原理如图所示。图中的激光器为飞秒激光器,它所发出的飞秒激光脉冲经分束器之后,分为泵浦脉冲和探测脉冲。泵浦脉冲用来激发THz发射极使其产生THz脉冲,然后该脉冲被离轴抛物面镜准直聚焦,经半透镜照射到电光晶体之上,由此改变电光晶体的折射率椭球。当线偏振的探测脉冲在晶体内与THz光束共线传播时,其相位会被调制。

2空气探测

2006年,戴建明和张希成等人。根据THz辐射的产生和探测是互逆过程这一理论,利用三阶非线性性质实现了空气等离子体探测THz电场。图是利用空气产生并探测THz的装置图。在探测THz辐射时,将800 nm的探测激光与THz脉冲同时聚焦在空气中,

在四波混频的过程中,THz辐射与800 nm激光可以产生400 nm波长的光Esignal 2w,其中Esignal 2w是THz波场诱导产生二次谐波信号的电场分量,可见二倍频光的电场强度正比于THz在特定延迟时刻的电场强度。

六.太赫兹在中国

近年来,太赫兹辐射(THz radiation)被广泛运用在诸多领域,所研究的问题涉及到如化学,物理,医学和材料科学等。与此同时,适合使用太赫兹辐射的实验设备也得到广泛、快速的发展。在一些有远见的科学家,如陈津培,杜祥琬,刘盛纲,杨国桢,姚建铨,张杰,吴培亨等院士的倡导和推动下,我国已建立起了多个太赫兹研究中心(室),促进了太赫兹技术的研究发展,并取得了重要的成果。2005年11月22—24日,以“太赫兹科学技术的新发展”为主题的第270次学术讨论会在北京香山饭店召开,至此我国的太赫兹研究及应用开发开启了一个新阶段。在此形势下,电子科技大学太赫兹研究中心,深圳大学太赫兹研究中心等创建了中国太赫兹研发网。

中国太赫兹研究界近期的一些大事:

1近日太赫兹研发网获悉,根据四川省科技厅川科基[2010] 9号、10号文件精神,电子科技大学“太赫兹科学技术”实验室正式获批成为四川省重点实验室。

2中科院颁发文件,正式批复成立中国科学院太赫兹固态技术重点实验室。实验室的依托单位为中国科学院上海微系统与信息技术研究所。该重点实验室的成立,是加强我院太赫兹研究基地建设,促进太赫兹科学与技术研究快速、持续、稳定发展的一项重要举措。

3中国科学院微电子研究所微波器件与集成电路研究室(四室)刘洪刚研究员带领的研究团队在太赫兹核心器件研究方面取得进展。最新结果表明,InP基太赫兹晶体管的截止频率(FT)高于0.6 THz,最大振荡频率(FMAX)突破1 THz,其Johnson Limit(FT ′BVCEO)比硅基晶体管提高了5倍以上.

七.总结与展望

THz科学技术作为一门前沿的新兴交叉学科,对其他科学如物理、化学、天文学、生物医学、材料科学、环境科学等均有重大的影响,相关应用需求迫切,发展迅猛。在当今基础研究、开发研究和产业化发展几乎同步进行的相互融合、相互促进的科技快速发展时代,我们要有高度的紧迫感和责任感,努力推动我国乃至世界THz科学技术及其应用更进一步的发展。

联系合同范文客服:xxxxx#qq.com(#替换为@)