电力系统过电压复习重点

发布时间 : 星期一 文章电力系统过电压复习重点更新完毕开始阅读

19.变压器的中性点和配电变压器的防雷保护: 一、变压器中性点的防雷保护

对于35kV及以下中性点非有效接地的系统,变压器是全绝缘的,其中性点的绝缘水平与相线端相同。这种变压器的中性点一般不用接避雷器保护 。

110kV及以上的中性点有效接地的系统,不接地的变压器中性点,需在中性点上加装阀型避雷器或保护间隙,避雷器的灭弧电压应大于该电网单相接地而引起的中性点电位升高的有效值。

500kV的变压器,其中性点通常是直接接地或经小电抗接地,中性点的绝缘水平为35kV级,应选用相应电压等级的避雷器进行保护。

中性点装有消弧线圈的变压器,且有单回进线运行的可能性时,应在中性点上加装避雷器。 二、配电变压器的防雷保护 三点联合接地:高压侧避雷器接地线与变压器的金属外壳以及低压侧中性点连在一起共同接地;正、反变换过电压;四点联合接地:高压侧避雷器的接地端、低压绕组的中性点、低压侧避雷器的接地端、以及变压器的外壳连在一起共同接地。 20.GIS变电站的防雷保护

GIS是将除变压器以外的变电站高压电器以及母线封闭在一个接地的金属壳内,壳内以3~4个大气压的SF6气体作为相间绝缘和相对地绝缘。GIS也叫做SF6全封闭组合电器变电站。 特点:导线波阻抗 较小、绝缘伏秒特性平坦、结构紧凑、内绝缘为稍不均匀电场结构、绝缘受外界影响小

21.直配电机的防雷保护:在发电机出线母线上安装一组避雷器;在发电机母线上装设一组并联电容器C;在发电机和架空线间接入一段电缆并在电缆首端加装管式避雷器;当发电机中性点有引出线时,在中性点加装一只避雷器;在电缆首端前方70m加装管式避雷器以发挥电缆段的作用;60MW以上的发电机不能与架空线直接连接,不能以直配电机的方式运行。

工频过电压

22.系统中在操作或接地故障时发生的频率等于工频(50 Hz)或接近工频的高于系统最高工作电压的过电压。当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。

我国500kV电网:要求母线的暂态工频电压升高不超过工频电压的1.3倍(420kV),线路不超过1.4倍(444kV),空载变压器允许1.3倍工频电压持续1min

产生工频过电压的主要原因:空载长线路引起的电容效应、系统发生不对称接地故障以及发电机的突然甩负荷。

限制工频过电压应针对具体情况采取专门的措施,常用的方法有:采用并联电抗器补偿空载长线的电容效应,选择合理的系统中性点运行方式,对发电机进行快速电压调整控制等等。在超特网中,系统中有可能在伴随工频电压升高的同时,产生操作过电压。这两种过电压联合作用会对电气设备绝缘造成危害 23.电源漏抗和并联电抗器对空载长线路电容效应的影响:线路电容电流流过电容漏抗会使电容电压升高,使线路首端电压高于电源电势,相当于加长了线路长度

线路末端接有并联电抗器时,线路末端电压U2将随电抗器的容量增大(XL减小)而下降。这是因为并联电抗器的电感能补偿线路的对地电容,减小流经线路的电容电流,削弱了电容效应。

空载线路末端接并联电抗器后,沿线电压分布。

并联电抗器的作用不仅是限制工频电压升高,还涉及系统稳定、无功平衡、潜供电流、调相调压、自励磁及非全相状态下的谐振等方面。

24.限制工频过电压的主要措施:1.并联高压电抗器补偿空载线路的电容效应。2.静止无功补偿器补偿空载线路电容效应。3.变压器中性点直接接地降低不对称故障引起的工频电压升高。4.发电机配置性能良好的励磁调节器或调压装置,使发电机甩负荷时抑制容性电流对发电机助磁电枢反应。防止过电压的产生和发展。5.发电机配置反应灵敏的调速系统,甩负荷时限制发电机转速的上升造成的工频过电压。

大气过电压又称为外部过电压,包括对设备的直击雷过电压和雷击于设备附近时在设备上感应的过电压。为防止直击雷对变电站设备的侵害,变电站装有避雷针和避雷线。为防止进行波的侵害,按电压等级装阀型避雷器、磁吹避雷器、氧化锌避雷器和与此配合的进线保护段,即架空地线、管型避雷器或火花间隙,在中性点不接地系统中装消弧线圈,可减少雷击跳闸次数。所有防雷设备都装有可靠的接地装置。防雷装置的主要功能是引雷、泄流、限幅、均压。

25.不对称接地引起的工频过电压

当系统发生单相或两相不对称对地短路故障时,短路引起的零序电流会使健全相上出现工频电压升高,其中单相接地时非故障相的电压可达较高的数值,若同时发生健全相的避雷器动作,则要求避雷器能在较高的工频电压作用下熄灭工频续流。 单相接地时工频电压升高值是确定避雷器灭弧电压的依据。

在系统发生单相接地故障时,可以采用对称分量法,利用复合序网进行分析计算非故障相的电压升高。

健全相的电压升高与故障点看进去的正序、负序、零序入口阻抗有关。

α:接地系数,说明单相接地故障时,健全相的对地最高工频电压有效值与故障前故障相对地电压有效值之比。

26.甩负荷引起的工频电压升高

当甩负荷后,发电机中通过激磁绕组的磁通来不及变化,与其相应的电源电势E’d 不变。原来负荷的电感电流对主磁通的去磁效应突然消失,而空载线路的电容电流对主磁通起助磁作用,使E’d上升。因此加剧了工频电压的升高。

其次,从机械过程来看,发电机突然甩掉一部分有功负荷,而原动机的调速器有一定惯性,在短时间内输入给原动机的功率来不及减少,主轴上有多余功率,这将使发电机转速增加。转速增加时,电源频率上升,不但发电机的电势随转速的增加而增加,而且加剧了线路的电容效应。 谐振过电压 27.当系统进行操作或发生故障时,这些电感、电容元件形成各种振荡回路,在一定条件下,可以产生串联谐振现象,导致系统中某部分或某元件上出现严重的谐振过电压。

谐振过电压持续时间比操作过电压长得多,甚至可稳定存在,直到破坏谐振条件为止。但在某些情况,谐振发生一段时间后会自动消失,不能自保持。

谐振过电压的危害性既决定于其幅值大小,也决定于持续时间长短。谐振过电压将危及电气设备绝缘,也可能因谐振持续的过电流烧毁小容量电感元件设备(如电压互感器)。 谐振分为线性谐振、参数谐振、铁磁谐振 28.消弧线圈补偿网络中的谐振

在中性点不接地的配电网中, 消弧线圈的主要作用是补偿系统单相接地故障的短路电流。利用消弧线圈灭弧后,故障相恢复电压的自由振荡的角频率与系统电源的角频率相接近,恢复电压将以拍频的规律缓慢上升,从而可以保证电弧不再发生重燃和最终趋于熄灭,使系统恢

复正常运行。

消弧线圈的功能有:补偿系统单相接地电容电流、延缓恢复电压的上升速度促使电弧自熄。 从减小残流、熄灭接地电弧来说,消弧线圈的脱谐度越小越好。 实际系统中消弧线圈又不宜运行在全补偿状态,因为系统正常运行时,电网三相对地电容不对称,可能在系统中性点上出现较大的位移电压。当系统接入消弧线圈后,恰好形成零序谐振回路,在系统位移电压的作用下将发生线性谐振现象。

29.抑制传递过电压的措施:.避免出现系统中性点位移电压,如尽量使断路器三相同期操作;装设消弧线圈后,应当保持一定的脱谐度,避免出现谐振条件;在低压绕组侧不装消弧线圈的情况下,可在低压侧加装三相对地电容,以增大3C0。 30.超高压电网中的潜供电流

系统发生单相接地故障时,非故障相的工作电压和负载电流可以通过相间电容和互感对故障相产生静电感应和电磁感应,使故障相在与电源断开后仍能维持一定的接地电流,被称为潜供电流(二次电流)。

潜供电流以电弧的形式存在,而潜供电流的自熄是单相自动重合闸成功的必要条件。潜供电流的自熄取决于潜供电流的大小及电弧熄灭后作用于故障点的恢复电压。

潜供电流和恢复电压均由静电感应和电磁感应两个分量组成,而起主导作用的是静电感应分量,静电感应分量是通过相间电容传递过来的。

要限制潜供电流和接地故障点的恢复电压,可采取在导线间装设一组三角联接的电抗器,补偿相间电容,使相间阻抗趋向无穷大,这样潜供电流的横分量和恢复电压的静电感应分量都将趋于零(补偿法 )。考虑系统限制空载长线路工频电压升高的要求,系统应装设一组星形联接而中性点接地的电抗器。 31.铁磁谐振具有以下特点:

产生串联铁磁谐振的必要条件是:电感和电容的伏安特性曲线必需相交

在相同的电源电势作用下,回路有两种不同性质的稳定工作状态。在外界激发下,电路可能从非谐振工作状态跃变到谐振工作状态,相应回路从感性变成容性,发生相位反倾现象,同时产生过电压与过电流。

非线性电感的铁磁特性是产生铁磁谐振的根本原因,但铁磁元件饱和效应本身也限制了过电压的幅值。此外,回路损耗也是阻尼和限制铁磁谐振过电压的有效措施。

基波铁磁谐振 、高次谐波谐振、分频谐振 32.断线引起的铁磁谐振过电压

断线泛指导线因故障折断、断路器拒动以及断路器和熔断器的不同期切合等。

非全相运行时的谐振电路,在一定的参数配合和激发条件下,可能会产生基频、高频或分频谐振。

当发生基频谐振时,会出现三相对地电压不平衡,如两相电压升高、一相电压降低,或三相电压同时升高的现象。在负载变压器侧可能发生负序电压占主要成分的情况,引起系统相序反倾,造成小容量电机反转的现象。

为防止断线过电压,可采取下列的限制措施:保证断路器的三相同期动作,不采用熔断器设备;加强线路的巡视和检修,预防发生断线;若断路器操作后有异常现象,可立即复原,并进行检查;不要把空载变压器常期接在系统中;在中性点接地的电网中,合闸中性点不接地的变压器时,先将变压器中性点临时接地。这样做可使变压器未合闸相的电位被三角形联接的低压绕组感应出来的恒定电压所固定,不会引起谐振。 33.电磁式电压互感器饱和引起的铁磁谐振过电压

正常运行时,电压互感器的励磁阻抗很大,所以每相对地阻抗(L和C0并联后)呈容性,三相基本平衡,系统中性点0的位移电压很小。但当系统中出现某些扰动,使电压互感器三

相电感饱和程度不同时,系统中性点就有可能出现较高的位移电压,激发起谐振过电压。 由于电压互感器饱和程度不同,会造成系统两相或三相对地电压同时升高,整个电网对地电压的变动表现为电源中性点0的位移(电网中性点的位移过电压)。 中性点的位移电压也就是电网的对地零序电压,将全部反映至互感器的开口三角绕组,引起虚幻的接地信号和其它的过电压现象,造成值班人员的错觉。

中性点直接接地的电网 、中性点经消弧线圈接地的情况下 ,不会出现此类谐振过电压。 虚幻接地现象是电磁式电压互感器饱和引起工频(基频)谐振过电压的标志。 34.1)铁磁谐振过电压是怎么产生的,其与线性谐振相比有什么不同的特点?

由于空载变压器,电磁式电压互感器等铁磁电感的饱和,可能与系统电容参数配合,激发起持续时间长,幅值较高的铁磁谐振过电压 1 可以再较大参数范围内产生

2 在外界激发下,可能从非谐振工作状态跃变到谐振工作状态,相应回路从感性变成容性,发生相位反倾,同时产生过电压与过电流

3 非线性电感的电磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值,此外,回路损耗也是阻尼和限制铁磁谐振过电压的有效措施。 2)电磁式电压互感器是如何引起基波铁磁过电压的?如何限制和消除铁磁谐振过电压 正常运行时,电压互感器的励磁阻抗很大,每相对地阻抗为容性,中性点的位移电压很小,但当系统中出现某些扰动,使电压互感器的三相电感饱和程度不同时,系统中性点就有可能出现较高的位移电压,激发铁磁谐振过电压

措施:改变系统零序参数:投入零序阻尼:采用专门的消谐装置

3)系统因电磁式电压互感器饱和,分别引起基波 分屏 高频谐振过电压时,将会出现什么不同的现象:基波(一相对地电压降低,虚幻接地);分频(表计指示有抖动或以低频来回摆动);高频(过电压数值较高) 35.参数谐振过电压

参数谐振过电压有以下的特点:参数谐振所需要的能量由改变参数的原动机供给,不需要单独的电源,一般只要有一定的剩磁或电容中具有很小的残余电荷,就可以使谐振得到发展;由于回路中有损耗,所以参数变化所引入的能量必须足以补偿损耗能量,才能保证谐振的发展。对一定的回路电阻R,存在一定的谐振范围。谐振发生以后,由于电感的饱和,使回路自动偏离谐振条件,使自励磁过电压不能继续增大。

抑制参数谐振过电压措施有:利用快速自动励磁调节装置消除同步自励磁;在超高压电网中投入并联电抗器,补偿线路电容,使得等值容抗大于和,从而消除谐振;临时投入串联电阻。 操作过电压

36.间歇电弧接地

.过电压产生机理:当中性点不接地系统中发生单相接地时,经过故障点将流过数值不大的接地电容电流。随着电网的发展和电压等级的提高,单相接地电容电流随之增加,一般 6 ~ l0kV 电网的接地电流超过30A,35 ~ 60kV 电网的接地电流超过10A 时电弧便难以熄灭。但这个电流还不至于大到形成稳定燃烧电弧,因此可能出现电弧时燃时灭的不稳定状态,引起电网运行状态的瞬时变化,导致电磁能量的强烈振荡,并在健全相和故障相上产生过电压,这就是间歇性电弧接地过电压。

过电压产生原因:当发生间歇性电弧接地时,健全相对地电压的起始值与稳态值不同,电容与电源电感产生振荡引起过电压。

限制过电压的措施:消除间歇性电弧:110kV 及以上电网大都采用中性点直接接地的运行方式(单相短路电流,断路器跳闸切除故障);我国 35kV 及以下电压等级的配电网采

联系合同范文客服:xxxxx#qq.com(#替换为@)