物理化学核心教程(第二版)沈文霞编科学出版社 - 课后习题详解第三章

发布时间 : 星期日 文章物理化学核心教程(第二版)沈文霞编科学出版社 - 课后习题详解第三章更新完毕开始阅读

(A) ΔU = 0 (B) ΔA = 0 (C) ΔS = 0 (D) ΔG = 0

答:(C)。绝热可逆过程是恒熵过程,由于QR= 0,所以ΔS = 0。

7. 1 mol 单原子分子理想气体,温度由T1变到T2时,等压可逆过程,系统的熵变为?Sp,等容可逆过程,系统的熵变为?SV,两着之比?Sp∶?SV等于:( )

(A) 1∶1

∶5 (C) 3

(B) 2∶1

∶3 (D) 5T2,等容、变温可逆过程,T1答:(D)。等压、变温可逆过程,?Sp?nCp,mln?SV?nCV,mlnCp,m?3T2。现在温度区间相同,单原子分子理想气体的CV,m?R,

2T15R,所以,?Sp∶相当于摩尔等压热容与摩尔等容热容之比。 ?SV?5∶3,28.1 g纯的H2O(l)在 373 K,101.3 kPa的条件下,可逆汽化为同温同压的

H2O(g),热力学函数的变量为 ΔU1,ΔH1和 ΔG1;现把1 g纯的H2O(l)(温度、压力同上),放在373 K 的恒温真空箱中,控制体积,使系统终态的蒸气压也为101.3 kPa,这时热力学函数变量为ΔU2,ΔH2和 ΔG2。这两组热力学函数的关系为: ( )

(A) ΔU1> ΔU2, ΔH1> ΔH2, ΔG1> ΔG2 (B) ΔU1< ΔU2, ΔH1< ΔH2, ΔG1< ΔG2 (C) ΔU1= ΔU2, ΔH1= ΔH2, ΔG1= ΔG2

(D) ΔU1= ΔU2, ΔH1> ΔH2, ΔG1= ΔG2

答:(C)。系统的始态与终态都相同,所有热力学状态函数的变量也都相同,与变化途径无关。

9. 298 K时,1 mol 理想气体等温可逆膨胀,压力从1000 kPa变到100 kPa,系统的Gibbs自由能的变化值为 ( ) (A) 0.04 kJ (B) ?12.4 kJ (C) 5.70 kJ (D) ?5.70 kJ

答:(D)。理想气体等温可逆膨胀,

?G??Vdp?nRTlnp1p2p2 p1100????1?8.314?298?ln? J??5.70 kJ

1000??10.对于不做非膨胀功的隔离系统,熵判据为: ( ) (A)(dS)T,U?0

(B)(dS)p,U?0

(C)(dS)T,p?0 (D)(dS)U,V?0

?U?0,答:(D)。在不做非膨胀功时,保持系统的U,V不变,即膨胀功等于零,

这就是一个隔离系统。

11.甲苯在101.3 kPa时的正常沸点为110℃,现在将1 mol甲苯放入与110℃的热源接触的真空容器中,控制容器的容积,使甲苯迅速气化为同温、同压的蒸气。如下描述该过程的热力学变量正确的是()

(A)?vapU?0 (C)?vapS?0

(B)?vapH?0 (D)?vapG?0

答:(D)。甲苯的始、终态与等温、等压可逆蒸发的始终态完全相同,所以状态函数的变化量也相同。对于等温、等压可逆相变,?vapG?0。

12.某实际气体的状态方程为pVm?RT??p,其中?为大于零的常数,该气体经等温可逆膨胀后,其热力学能将 ( )

(A) 不变 (B) 增大

(C) 减少 (D) 不能确定

答:(A)。可以将该实际气体的状态方程改写为p(Vm??)?RT,与理想气体的状态方程相比,只对体积项进行了校正,说明该实际气体分子本身所占的体积不能忽略,但对压力项没有进行校正,说明该气体分子之间的相互作用可以忽略,这一点与理想气体相同,所以在膨胀时,不需克服分子间的引力,所以在等温膨胀时,热力学能保持不变。这种气体作绝热真空膨胀时,温度也不会改变。

13.在封闭系统中,若某过程的?A?Wmax,应满足的条件是()

(A)等温、可逆过程 (B)等容、可逆过程 (C)等温、等压、可逆过程 (D)等温、等容、可逆过程

答:(A)。在等温、可逆过程中,Helmholtz自由能的变化值就等于对环境做的最大功,包括膨胀功和非膨胀功,这就是将Helmholtz自由能称为功函的原因。在定义Helmholtz自由能时,只引入了等温的条件。

14.热力学第三定律也可以表示为 ( ) (A) 在0 K时,任何晶体的熵等于零 (B) 在0 K时,任何完整晶体的熵等于零 (C) 在0 ℃时,任何晶体的熵等于零

(D)在0 ℃时,任何完整晶体的熵等于零

答:(B)。完整晶体通常只有一种排列方式,根据描述熵的本质的Boltzmann公式,S?kBlnΩ,可得到,在0 K时,完整晶体的Ω?1,则熵等于零。

15.纯H2O(l)在标准压力和正常沸点时,等温、等压可逆汽化,则( ) (A)ΔvapU?=ΔvapH?,ΔvapA?=ΔvapG?,ΔvapS?> 0

(B)ΔvapU?<ΔvapH?,ΔvapA?<ΔvapG?,ΔvapS?> 0

(C)ΔvapU?>ΔvapH?,ΔvapA?>ΔvapG?,ΔvapS?< 0

(D) ΔvapU?<ΔvapH?,ΔvapA?<ΔvapG?,ΔvapS?< 0

答:(B)。任何液体在汽化时,其ΔvapS?> 0。在正常沸点等温、等压可逆汽化时,ΔvapG?=0,液体等压变为气体时,要对环境做功,所以ΔvapA?<0,ΔvapU?<ΔvapH?。

16.在-10℃、101.325kPa下,1mol水凝结成冰的过程中,下列哪个公式仍适用 ()

(A) ?U= T?S

(B)?S??H??G T(C) ?H= T?S + V?p (D)?GT,p = 0

答:(B)。过冷水结冰是一个不可逆过程,但是温度保持不变,根据Gibbs自由能的定义式,在等温时,?G??H?T?S,这个公式总是可以使用的。只是?H和?S的数值要通过设计可逆过程进行计算。

五.习题解析

1.热机的低温热源一般是空气或水,平均温度设为293 K。为了提高热机的效率,只有尽可能提高高温热源的温度。如果希望可逆热机的效率能达到60%,试计算这时高温热源的温度。高温热源一般是加压水蒸气,这时水蒸气将处于什么状态?已知水的临界温度为647 K。

解:根据理想的Carnot热机,可逆热机效率与两个热源温度的关系式为

??Th?Tc ThTh?293 K Th60%?解得高温热源的温度Th?733 K

这时加压水蒸气的温度已远远超过水的临界温度,水蒸气处于远超临界状态,压力很高,需要耐压性能很好的锅炉。事实上,实用的热机都是不可逆的,就是有这样的高温热源,实用热机的效率也远低于60%。

2.①5 mol双原子分子理想气体,在等容的条件下,由448 K冷却到298 K;②3 mol单原子分子理想气体,在等压条件下由300 K加热到600 K,试计算这两个过程的?S。

5解:① 该过程系等容、变温过程,双原子分子理想气体的CV,m?R,所以

2?S?nCV,mlnT2 T1298??5?1?1??5??8.314 ?ln? J?K??42.4 J?K

448??2② 该过程系等压、变温过程,单原子分子理想气体的Cp,m??S?nCp,mlnT2 T15R 25600???1?1??3 ??8.314 ?ln?J?K?43.2 J?K

2300?????3.某蛋白质在323 K时变性,并达到平衡状态,即:天然蛋白质???变性蛋白质,已知该变性过程的摩尔焓变?rHm?29.288 kJ?mol?1,,求该反应的摩尔熵变?rSm。。

解:因为已达到平衡状态,可以认为变性过程的焓变就是可逆热效应,

Q?H?rSm?R?rm

TT29.288 kJ?mol?1??90.67 J?K?1?mol?1

323 K4.1 mol理想气体在等温下,分别经历如下两个过程:①可逆膨胀过程;②向真空膨胀过程,终态体积都是始态体积的10倍。分别计算这两个过程系统的熵变。

解:①因该过程系理想气体等温可逆膨胀过程,所以:

?S1?nRlnV2 V110????1?8.314?ln? J?K?1?19.14 J?K?1

1??②虽然与(1)的膨胀方式不同,但其始、终态相同,熵是状态函数,所以该过程的熵变与①的相同,即?S2?19.14 J?K?1。

5.有2 mol单原子分子理想气体,由始态500 kPa,323 K 加热到终态1000

kPa,373 K。试计算此气体的熵变。

解:这是一个p,V,T都改变的过程,计算熵变要分两步进行。第一步,等温可逆改变压力的过程,第二步,等压可逆改变温度的过程,熵变的计算式为

?S?nRlnp1T?nCp,mln2 p2T1?p15T2??nR?ln??ln?

T1??p22

联系合同范文客服:xxxxx#qq.com(#替换为@)