伺服电机的PLC控制方法

发布时间 : 星期二 文章伺服电机的PLC控制方法更新完毕开始阅读

伺服电机的PLC控制方法

以我司KSDG系列伺服驱动器为例,介绍PLC控制伺服电机的方法。伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本文简要介绍位置模式的控制方法一、按照伺服电机驱动器说明书上的\位置控制模式控制信号接线图\连接导线3(PULS1),4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。7(com+)与外接24V直流电源的正极相连。29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器。构成更完善的控制系统。二、设置伺服电机驱动器的参数。1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也可以满足基本的要求.3、Pr40----指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。4、Pr41,Pr42----简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),6(SIGN2)断开时为正方向(CCW),反之为反方向(CW)。(正、反方向是相对的,看您如何定义了,正确的说法应该为CCW,CW).5、Pr46,Pr4A,Pr4B----电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。其公式为:伺服电机每转一圈所需的脉冲数=编码器分辨率×Pr4B/(Pr46×2^Pr4A)伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=100,Pr4B=20。从上面的叙述可知:设定Pr46,Pr4A,Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。

PLC触摸屏直接控制伺服电机程序设计

摘要:以三菱公司的FX3U-48MT-ES-A作为控制元件,GT1155-QFBD-C作为操作元件直接控制三菱伺服电机的具体程序设计。

关键词:PLC; 触摸屏; 伺服电机

伺服电机又称执行电机,它是控制电机的一种。它是一种用电脉冲信号进行控制的,并将脉冲信号转变成相应的角位移或直线位移和角速度的执行元件。根据控制对象的不同,由伺服电机组成的伺服系统一般有三种基本控制方式,即位置控制、速度控制、力矩控制。本系统我们采用位置控制。

PLC在自动化控制领域中,应用十分广泛。尤其是近几年PLC在处理速度,指令及容量、单轴控制方面得到飞速的发展,使得PLC在控制伺服电机方面也变得简单易行。 1控制系统中元件的选型 1.1PLC的选型

因为伺服电机的位移量与输入脉冲个数成正比,伺服电机的转速与脉冲频率成正比,所以我们需要对电机的脉冲个数和脉冲频率进行精确控制。且由于伺服电机具有无累计误差、跟踪性能好的优点,伺服电机的控制主要采用开环数字控制系统,通常在使用时要搭配伺服驱动器进行控制,而伺服电机驱动器采用了大规模集成电路,具有高抗干扰性及快速的响应性。在使用伺服驱动器时,往往需要较高频率的脉冲,所以就要求所使用的PLC能产生高频率脉冲。三菱公司的FX3U晶体管输出的PLC可以进行6点同时100 kHz高速计数及3轴独立100 kHz的定位功能,并且可以通过基本指令0.065 μs、PCMIX值实现了以4.5倍的高速度,完全满足了我们控制伺服电机的要求,所以我们选用FX3U-48MT-ES-A型PLC。 1.2伺服电机的选型

在选择伺服电机和驱动器时,只需要知道电机驱动负载的转距要求及安装方式即可,我们选择额定转距为2.4 N·m,额定转速为3 000 r/min,每转为131 072 p/rev分辨率的三菱公司HF-KE73W1-S100伺服电机,与之配套使用的驱动器我们选用MR-E-70A-KH003伺服驱动器。三菱的此款伺服系统具有500 Hz的高响应性,高精度定位,高水平的自动调节,能轻易实现增益设置,且采用自适应振动抑止控制,有位置、速度和转距三种控制功能,完全满足要求。

同时我们采用三菱GT1155-QFBD-C型触摸屏,对伺服电机进行自动操作控制。 2 PLC控制系统设计

我们需要伺服电机实现正点、反点、原点回归和自动调节等动作,另外为确保本系统的精确性我们增加编码器对伺服电机进行闭环控制。PLC控制系统I/O接线图如图1。

图1 I/O接线图

上图中的公共端的电源不能直接接在输入端的24 V电源上。根据控制要求设计了PLC控制系统梯形图如图2。

图2 梯形图

M806控制伺服急停,M801控制伺服电机原点回归,M802控制伺服正点,M803控制伺服反点,M804为自动调节,M805为压力校正即编码器的补偿输入。在电机运行前需要首先进行原点回归,以确保系统的准确性和稳定性,当M50和M53同时接通时,伺服电机以2 kHz的速度从Y0输出脉冲,开始做原点回归动作,当碰到近点信号M30=ON时,变成寸动速度1 kHz,从Y0输出脉冲直到M30=OFF后停止。M30是在自动调节时,电机转动的角度与零点相等时为ON。

电机在进行正反点时,我们采用FX3U具有的专用表格定位指令DTBL S1 S2;在使用表格定位之前,我们首先要在梯形图左边的PLC parameter(PLC参数)中进行定位设定。正反点控制我们采用指令DRVA S1 S2 D1 D2绝对定位指令。在自动运行时,我们利用PLC内强大的浮点运算指令,根据系统的多方面参数进行计算;在操作时,我们只需要在触摸屏上设定参数,伺服电机便根据程序里的运算公式转化成为脉冲信号输出到驱动器,驱动器给电机信号运转。在伺服电机运行的过程中为确保电机能达到我们需要的精度,我们采用增量式编码器与

伺服电机形成闭环控制,我们把计算到的角度与编码器实际测量角度进行比较,根据结果调整伺服电机的脉冲输出,从而实现高精度定位。整个程序我们采用步进指令控制(也可以采用一般指令控制),简单方便。 3 伺服系统设置 3.1伺服驱动器的接线

伺服系统的接线很简单,我们只需要按照规定接入相对应的插头即可。将三相电源线L1,L2,L3插头接入CPN1,将伺服电机插头接入CN2,将编码器插头接入CNP2,控制线插头接入CN1。我们在调试程序时需要用伺服电机的专用软件,通过RS422接口接到伺服系统的CN3上即可。

对于CN1控制线接法如表1。

表1控制线接法

名称 引脚号 接线

3.2伺服驱动器的参数设定

系统采用定位控制。三菱MR-E系列的伺服驱动器,主要有两组参数,一组为基本参数,另一组为扩展参数,根据本系统要求,我们主要设定基本参数,主要有

NO.0,NO.1,NO.2,NO.3,NO.4,NO.5,NO.7,NO.18,NO.19,扩展参数要根据具体情况进行设定。

同时我们也可以通过伺服设置软件SETUP221E进行参数设置。我们在伺服电机进行调试过程中建议先设为速度模式,进行伺服电机的点动测试。 4 触摸屏程序设计

建立初始画面,在画面上分别设置按钮开关,在开关上分别写上,压力+、压力-、原点回归、自动调节、压力校正、伺服急停等字样,其中继电器的对应情况如上所写。控制画面如图3和图4。

VIN 1 110 OPC 2 110 RES 3 Y2 EMG 8 Y1 ALM 9 60 SG 13 0 PP 23 Y0 NP 25 Y3

图3画面设置

联系合同范文客服:xxxxx#qq.com(#替换为@)