流体力学 - 丁祖荣 - 上册 - - - 习题解析

发布时间 : 星期日 文章流体力学 - 丁祖荣 - 上册 - - - 习题解析更新完毕开始阅读

(3)

?u?v?w???2z?(?2z)?x2z?2zx?0,不满足。 ?x?y?z?u?v?w???yt?(?2zt2)?(2zt2?yt)?0,满足。 ?x?y?z22 (4)

BP3.1.3 在不可压缩流体三维流场中,已知u?x?y?x?y?2,导另一速度分量w的一般表达式。

答:w??(2xz?z?2yz?z)?C

解:由

2v?y2?2yz,试推

?v?u?2y?2z,?2x?1和?y?x2?w?u?v??(?)??(2x?1?2y?2z) ?z?x?y w??(2xz?z?2yz?z)?C

BP3.1.4 在不可压缩流体平面流场中,已知u?ax?by(a, b为常数),试推导y方向速

度分量v的表达式,设y = 0时,v = 0。

答:v??2axy

2解:由

?u?v?v?u??0,????2ax,v??2axy?f(x) ?x?y?y?x 当y = 0时,v = f (x) = 0, v = - 2 a x y

BP3.1.5 不可压缩粘性流体对零攻角平板作定常绕流时,层流边界层中速度廓线可近似用

u3y1?y????? 下式表示:

U2?2??? 式中U为来流速度,δ为边界层厚度,δ与沿平板距前缘的坐标x的关系为

3??cx,c为常数。试验证y 方向速度分量v满足如下式

24v??3?y?3?y?????????? Ux??8???16????? 解:由??cx,d?11cx??c?? dx22x2xx1?u31?131??y(?2)?y(?3)4U?x2?2x2?2x 331?31?3?yy??y2?y34?(4?2)4?x4?x4x??1?v1?u3?yy3???(?) 由连续性方程

U?yU?x4x?2?4v3?yy3?1y1y?(?)dy?(?)U4x?0?2?44x2?24?40y324y

???3y23y4?()?()?x?816????BP3.2.1 试分析角域流u = k x, v = -k y (k为常数)中的应力状态。

提示:有附加法向应力,无切向应力。 解:?x?2??u?v?2?k,?y?2???2?k, ?x?ypyy??p?2?k

pxx??p?2?k,

?xy??yx??(?u?v?)?0?y?xBP3.2.2 试分析纯剪切流u = k y, v = k x (k为常数)中的应力状态。

提示:无附加法向应力,有切向应力

答:?x??y?0,pxx?pyy?0,?xy??yx?2?k 解:?x?2??u?v?0,?y?2??0, ?x?ypyy??p ?u?v?)??k??k?2?k?y?xpxx??p,

?xy??yx??(BP3.5.1 二无限大平行板间距为b,中间充满均质不可压缩牛顿流体。设下板固定不动,上

板以匀速U沿x方向运动。在x方向存在恒定的压强梯度dp / dx = 常数,设速度分布和体积力分别为

u?U1dp2y?(y?by), v = 0; fx = 0, fy = - g b2?dx 试验证是否满足N-S方程及边界条件。

提示:边界条件为y = 0, u = 0 ;y = b, u = U

解:平面流动N-S方程为

?u?u?u?p?2u?2u?u?v)??fx???(2?2) ?(?t?x?y?x?x?y?v?v?v?p?2v?2v?v)??fy???(2?2) ?(?u?t?x?y?y?x?y(a)

(b)

?u?u?2u?uU1dp??2?0,??(2y?b) 本题中

?t?x?x?yb2?dx?2u1dpdp?p?,?C ,???g(重力) 2?y?dxdx?y 代入(a)式左边= 0,右边=?dp1dpdpdp???????0 dx?dxdxdx 代入(b)式左边= 0,右边=??g?(??g)?0, 满足N-S方程。 在y = 0处u = 0与下板相同; 在y = b处u?U?1dp2(b?b2)?U,与上板相同,满足边界条件。

2?dxBP3.5.2 放置在x轴线上无限大平板的上方为静止的均质不可压缩牛顿流体。设平板在自

身平面内以速度u = U cosωt作振荡运动,U和ω均为常数。不考虑重力和压强因素,试验证流场中的速度分布

u?Ue?y?2?cos(?t-y?),v = 0 2? 是否满足N-S方程及边界条件。

提示:边界条件为y = 0, u = U cosωt;y→∞, u = 0

解:这是不定常流动,忽略重力和压强因素,N-S方程为

?u?u?u?2u?2u?u?v??(2?2) ?t?x?y?x?y?y?u??U?e由速度分布式?t?2???2u?usin(?t-y),?0,2?0,v = 0

2??x?x?2??u??y??Ue?y2??U?2??y?cos(?t?y)?Ue2?sin(?t?y??)(?)2?2??e2??-y2?

[sin(ωt?y[sin(?t?yω?)?cos(?t?y)]2ν2??2u??y??Ue2?y2??2???)?cos(?t?y)]? 2?2???y?Ue2?

?2?[cos(?t?y????)(?)?sin(?t?y)(?)]2?2?2?2?ω??)?cos(?t?y)?cos(?t?y)? 2ν2?2??2??-y??Ue2??2?[sin(ωt?y???y?sin(?t?y)]??Ue2???y?u??U?e N-S方程左边=?tsin(?t?y?)2??2?sin(?t-y?2??) 2??),满足N-S方程。 2??y?2u??U?e 右边=??y2sin(?t-y 在y = 0处,流体速度为u = U cosωt,与平板一致,在无穷远处,u = 0,满足边界条件。 BP3.6.1 盛水容器的固壁如图BP3.6.1所示,自由液面上均为大气压强。试定性地画出斜壁

或曲壁AB和A'B'上的压强分布图。

提示:图C是密封容器,可设压强均大于大气压强。注意弧线上压强连续变化,且弧

AB上最高点压强最小;弧A’B’上最低点压强最大。 BP3.6.2 试求水的自由液面下5m深处的绝对压强和表压强,液面上为大气压强。 答:p5m?150.35?103Pa(ab)?49.05?103Pa

解:p5m = pa+ρgh = (101.3×10 3 Pa) + (9810 kg / m2 s 2) (5m) = (101.3×10 3Pa) + (49.05×103Pa ) =150.35×10 3Pa (ab) p5m=ρgh = 49.05×103Pa (g)

BP3.6.3 图BP3.6.3示密封容器内盛有水,水面高h0 =1.5m,液面上压强为p0。在侧壁B

点的测压管中水位高为h1=1m,A、B两点的位置高度为 hA=1.2m,h B= 0.8m。试求p0(ab), pA(v),pB (g)。 答:p0=96.4 kPa (ab), pA=1.96 kPa (v); pB = 1.96 kPa (g)

解:利用等压面性质

p0 +ρg (h0- hB) =ρg(h1 - hB )

p0 =ρg(h1-h0)=(9810 kg/m2s2 ) (1m -1.5m) = - 4905Pa p0=(-4.9×103Pa)+ (101.3×10 3Pa) = 96.4×103Pa (ab)

pA= p0+ρg(h 0-hA)= -4903 Pa +9806 kg / m2s2) (1.5m -1.2m) =(-4903Pa)+(2941.8Pa) = -1961.2 Pa=1.96kPa(v)

pB= p0+ρɡ (h0-hB) = (-4903Pa) + (9806 kg / m2s2 ) (1.5m - 0.8m ) = (-4903Pa)+( 6864.2Pa ) = 1961.2Pa (g)=1.96kPa(g)

BP3.6.4 一气压表在海平面时的读数为760 mmHg,在山顶时的读数为730 mmHg,设空气的

密度为1.3 kg/m3,试计算山顶的高度。

答:h=313.5m

解:p0?p1?(760mmHg-730mmHg)101300pa760mmHg?3998.7Pa?3998.7kg/ms2

联系合同范文客服:xxxxx#qq.com(#替换为@)