生化基础知识--总结终极版

发布时间 : 星期日 文章生化基础知识--总结终极版更新完毕开始阅读

紫外-谷氨酸脱氢酶法:

NADH的减少,引起340nm吸光度的下降,单位时间内下降程度与UREA浓度成正比(固定时间法、两点速率法)。 升高主要见于肾脏疾病,也可见于脱水、糖尿病昏迷、肾上腺危相、胃肠道出血、循环虚脱,下降见于严重的肝脏疾病。 Cr 碱性苦味酸法:

肌酐-苦味酸复合物的生成,导致510nm吸光度的增加,单位时间内增加量与Cr浓度成正比(固定时间法、两点速率法)。 肌氨酸氧化酶法:

醌亚胺的生成,导致550nm吸光度的增加,增加的程度与Cr的含量成正比(终点法)。 升高见于肾功能的损伤。 Glu 氧化酶法:

醌亚胺的生成,导致500nm吸光度的增加,增加的程度与Glu的含量成正比(终点法)。 己糖激酶法:

NADH的生成,引起340nm吸光度的增加,增加程度与Glu浓度成正比(终点法)。 升高主要见于糖尿病,也可见于甲亢、垂体或肾上腺机能亢进;降低主要见于胰岛素过量、甲减、垂体机能减退、肾上腺机能减退、葡萄糖吸收障碍。

TP

紫红色络合物的生成,导致540nm吸光度的增加,增加的程度与TP的含量成正比(终点法)。 升高见于各种原因失水、一种或多种球蛋白分泌增多;降低见于营养不良。 Alb

白蛋白溴甲酚绿复合物的生成,导致630nm吸光度的增加,增加的程度与Alb的含量成正比(终点法)。 升高见于各种原因失水;降低见于肝脏疾病、肾病综合症、营养不良、蛋白丢失。

T-Bil

重氮偶合法、比色法、终点法。冻干单剂型

偶氮胆红素的生成,导致545nm吸光度的增加,增加的程度与T-Bil的含量成正比(终点法)。

胆红素 钒酸盐 >胆绿素 pH3.0表面活性剂

钒酸盐氧化法,比色法,终点法,液体双剂型

胆红素的减少引起在波长450nm处吸光度的下降,吸光度的变化与总胆红素含量成正比。 升高见于各类肝脏疾病,也可见于溶血性疾病。

D-Bil

重氮偶合法、比色法、终点法,冻干单剂型

偶氮胆红素的生成,导致545nm吸光度的增加,增加的程度与D-Bil的含量成正比(终点法)。

胆红素 钒酸盐 >胆绿素 pH3.0表面活性剂

钒酸盐氧化法,比色法,终点法,液体双剂型

胆红素的减少引起在波长450nm处吸光度的下降,吸光度的变化与直接胆红素浓度成正比。 升高见于各类肝脏疾病和胆导阻塞。

NH4+

NADH的减少,引起340nm吸光度的下降,下降程度与NH4+浓度成正比(终点法)。 升高见于肝昏迷、肝性脑病。

CO2

NADH的减少,引起340nm吸光度的下降,下降程度与CO2浓度成正比(终点法)。 异常见于酸碱平衡失调。

iP

络合物的生成,引起340nm吸光度的上升,上升程度与iP浓度成正比(终点法)。 升高见于慢性肾炎、甲状旁腺功能减退、VitD过多;降低见于佝偻病、骨软化等。 Ca 邻-甲酚肽络合酮(CPC)法

有色络合物的生成,引起575nm吸光度的上升,上升程度与Ca浓度成正比(终点法),长征公司采用此法。

甲基麝香草酚兰(MTB)法

有色络合物的生成,引起612nm吸光度的上升,上升程度与Ca浓度成正比(终点法),科华公司采用此法。 升高见于甲状旁腺功能亢进、肿瘤骨转移、VitD过多;降低见于甲状旁腺功能减退、佝偻病、肾病等。

Mg

有色络合物的生成,引起582nm吸光度的上升,上升程度与Mg浓度成正比(终点法)。 升高见于尿毒症;降低见于吸收障碍、糖尿病性昏迷、急慢性酒精中毒、慢性肾病等。 Cl

红色络合物的生成,引起480nm吸光度的上升,上升程度与Cl浓度成正比(终点法)。 升高见于柯兴综合症、酸中毒、尿毒症等;降低见于阿狄森氏病、碱中毒、腹泻、尿崩等。 ApoA1/ apoB

抗原抗体复合物的形成,导致340nm透射浊度的增加,增加的程度与apoA1/apoB的浓度成正比(终点法)。 ApoA1降低和apoB升高见于未控制的糖尿病、肾病综合症、肝功能低下;ApoA1和apoB均降低见于长期血液透析;ApoA1与 apoB的比值可预测心血管疾病危险性的预测,比值高,危险性低。

Lp(a)

抗原抗体复合物的形成,导致340nm透射浊度的增加,增加的程度与Lp(a)的浓度成正比(终点法)。 高浓度的Lp(a)是动脉粥样硬化的独立危险因子。

1.7. 生化分析仪测定方法及反应度的计算

各项目的计算方法决定于其所采用的测定方法和定标模式,临床生化检验测定方法总的来说可分为二大类:终点法和动力学法,其中动力学法又可分为零级动力学法和一级动力学法,下面分别介绍。 1.7.1. 终点法 1.7.1.1. 概述

指经过一段时间的反应,整个反应达到平衡,所有的被测定物已转变为产物,反应液的吸光度不再增加(或降低),吸光度的增加(或降低)程度与被测定物的浓度成正比。如下图:

如图所示:t1时刻加入试剂(体积为V), t2时刻加入样本(体积为S),然后搅拌并反应,之后测量反应液的吸光度,在t3时刻反应达到终点; t2-t3为测定时间。 1.7.1.2. 反应度的计算 结果的计算包括三部分:反应度R(Response)的计算、定标参数的计算和浓度(或活性)的计算。这里仅介绍R的计算,定标参数的计算和浓度(或活性)的计算在后面专门讨论。 a) 单试剂单波长法

反应度R= t3时刻吸光度—单试剂空白吸光度 b) 单试剂双波长法

基本上同“单试剂—单波长—终点法”,只是对于每一个测定周期,其实际吸光度等于Aλ1-Aλ2。

c) 双试剂单波长法

t1时刻加入第一试剂(体积为V1),t2时刻加入样本(体积为S),之后搅拌,t3时刻加入第二试剂(体积为V2)并立即搅拌,t4时刻反应达到终点。t3-t2为孵育时间,t4-t3为测定时间。

R=t4时刻吸光度—双试剂空白吸光度;(反应起始时间设置为0)

R=t4时刻吸光度—双试剂空白吸光度—t3前一时刻的吸光度×体积校正因素;(反应起始时间设置为<0) d) 双试剂双波长法

基本上同“单试剂—单波长—终点法”,只是对于每一个测定周期,其实际吸光度等于Aλ1-Aλ2。

1.7.2. 零级动力学法 1.7.2.1. 概述

指反应速度与反应物(底物)浓度无关。因此,在整个反应过程中,反应物可以匀速地生成某个产物,导致被测定溶液在某一波长下吸光度均匀地减小或增加,减小或增加的速度(△A/min)与被测物(催化剂)的活性或浓度成正比。零级动力学法即通常所说的动力学法,也被称为连续监测法;主要用于酶活性的测定。

实际上,由于底物浓度不可能足够大,随着反应的进行,底物消耗到一定程度后,反应速度不再与酶活性成正比(参见米氏方程),因此,零级动力学法是针对于特定时间段而言的,各试剂商对这段时间有严格规定,见下图中的t3-tn:

t1时刻加入试剂(体积为V),t2时刻加入样本(体积为S),t3时刻反应稳定,tn时刻停止对反应进行监测;t3到tn之间的时间内,吸光度匀速变化,变化的速率和反应物的浓度成线性关系。t2-t3为延迟时间,t3-tn为测定时间。 1.7.2.2. 反应度的计算 a) 单波长 其中:

n=t3到tn间的数据个数 Ti=时间

Ai=某一时间的吸光度 b) 双波长

基本同单波长,只是某一时间的吸光度等于主波长吸光度—次波长吸光度 1.7.3. 一级动力学法 1.7.3.1. 概述

一级动力学法是指在被测物参与反应的条件下,在一定的反应时间内,反应速度与反应物浓度的一次方成正比,由于反应物在不断的消耗,因此整个反应速度在不断的减小,表现为吸光度的增加(或降低)速度越来越小,由于这类反应达到平衡的时间很长,必需在特定时间段内进行监测,该段时间内吸光度的增加(或)降低与被测定物的浓度成正比,见下图。一级动力学法又被称为初速率法、固定时间法、二点动力学法等。

如图所示:t1时刻加入试剂(体积为V),之后测量试剂空白的吸光度,t2时刻加入样本(体积为S),t3时刻反应稳定,t4时刻停止对反应进行监测;t2-t3为延迟时间,t3-t4为测定时间。

1.7.3.2. 反应度的计算 a) 单波长

反应度R=(t4时刻吸光度—t3时刻吸光度)/(t4—t3) b) 双波长

基本同单波长,只是某一时间的吸光度等于主波长吸光度—次波长吸光度 1.8. 定标参数和浓度的计算 1.8.1. 定标的意义

定标就是要找出一个参考点,就是一个K值(或 F 值)。它是由仪器与试剂状态确定下来的。当我们测定一个标本时,无论您是用手工的方法或全自动生化分析仪,测出来的值只是一个吸光度,这个吸光度对我们没有什么意义,我们要把这个吸光度转换成一个浓度或是酶的活性。那就要乘上一个 K 值,计算并打印出来的结果对我们就有意义了。 K 值就是我们通过定标找出来的。一般上最低要求是有试剂空白与标准品。经过仪器测定出两个吸光度,则:

标准液的浓度我们是知道的,这两个吸光度可以由仪器测出,这样就得出一个 K 值。之后无论什么样的标本,我们只要测出一个吸光度,用吸光度乘以这个K值,就可以得到标本的浓度了。

因此, K 值具有非常决定性的意义,可以决定测量标本的准确性。 1.8.2. 定标参数的计算

定标方法分为两大类,即线性定标和非线性定标,其中线性定标又包括单点线性定标(又称因数法)、两点线性定标(又称线性法)和多点(大于3点)线性定标(又称线性回归法),主要适用于比色法测定的项目;非线性定标主要包括Logistic-Log 4P、Logistic-Log 5P、Exponential5P、Polynomial5P、Parabola和 Spline,主要适用于比浊法测定的项目,下面分别予以介绍: 1.8.2.1. 几点说明

联系合同范文客服:xxxxx#qq.com(#替换为@)