向湘君毕业论文1

发布时间 : 星期一 文章向湘君毕业论文1更新完毕开始阅读

硅腐蚀技术是硅微机械加工中最基础、最关键的技术,它通常有两种:干法腐蚀和湿法腐蚀。根据腐蚀剂的不同,硅的湿法腐蚀又可分为各向同性腐蚀和各向异性腐蚀。各向同性腐蚀主要用于多晶硅绒面制备,各向异性腐蚀主要用于单晶硅绒面制备。

1、各向同性腐蚀(酸腐蚀)

通常应用的硅的腐蚀液包含氧化剂(如硝酸)和络和剂(如氢氟酸)两部分。 酸腐蚀的原理是一方面通过氧化剂与硅的作用在硅的表面生成二氧化硅,另一方面通过氢氟酸对于二氧化硅的络和剂作用生成可溶性的络和物,在硅片表面留下了具有一定深度的腐蚀坑。从而完成对硅的腐蚀过程。

多晶硅片由于晶向复杂,不能像单晶硅一样用碱性溶液腐蚀产生金字塔型的绒面结构。因此大多采用氢氟酸/硝酸体系进行绒面的制备。硅和这种溶液反应的速度与晶向无关,是各向同性的,因此可以腐蚀出椭圆形的凹坑,入射光在凹坑中多次入射,从而起到陷光效果。

2.各向异性腐蚀(碱腐蚀)

由于不同晶向的单晶硅在碱性溶液中腐蚀的速率不同,利用这种差异可以用碱性溶液在(100)晶向的硅片上腐蚀出类似金字塔不规则排列的绒面结构。入射光可以在金字塔的侧面上形成两次或两次以上入射,从而大大降低了硅片的反射率。

制溶液通常用低浓度(1. 5 - 2wt%)的氢氧化钠溶液混合((3--10 vol%)的异丙醇

。。(或乙醇)配制成,在70C-80C温度范围内对(100)晶向的硅片表面进行各向异性腐蚀,便可以得到由(111)面包围形成的角锥体分布在表面上构成的“绒面”。

硅在碱溶液中的腐蚀现象,可以用电化学腐蚀的微电池理论进行解释。实现电化学腐蚀应具备的三个条件如下:

①被腐蚀的半导体各区域之间要有电位差,以便形成阳极和阴极。电极电位低的是阳极,电极电位高的是阴极,阳极被腐蚀溶解。

②具有不同电极电位的半导体各区域要互相接触。 ③这些不同区域的半导体要处于互相连通的电解质溶液中。

硅晶体在碱溶液中的腐蚀能满足上述三个条件,从而在表面形成许多微电池。依靠微电池的电化学反应,使半导体表面不断受到腐蚀。在用NaOH稀溶液腐蚀硅片时

??2S?6OH?SOi3?3H2O?4e 阳极处:i?2H?2e?H2? 阴极处:

总的反应式:Si?2NaOH+H2O?Na2SiO3?H2?

图4-1单晶硅(100)表面上NaOH水溶液腐蚀形成的绒面形貌SEM照片 单晶硅的各向异性腐蚀机理至今尚没有完全被人们认识清楚。但有两点为人们所广泛接受,

一是总反应为: Si?2NaOH+H2O?Na2SiO3?H2? 二是反应的一般过程为:

(1)反应物分子通过界面扩散到硅表面; (2)硅表面对反应物分子进行吸附; (3)在硅表面发生反应;

(4)反应产物和副产物通过界面扩散进入电解液中。

4.3 角锥体形成的原理

1.晶体的各向异性

晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。晶体的各向异性具体表现在晶体不同方向上的弹性膜量、硬度、热膨胀系数、导热性、电阻率、电位移矢量、电极化强度、磁化率和折射率等都是不同的。各向异性作为晶体的一个重要特性具有相当重要的研究价值。

晶面是在晶格点阵中,通过任意三个不共线的原子排列构成的平面,该平面将包含无限多个周期性分布的格点。

晶向指一族晶列的共同方向,晶面的法线方向。

如图1.2所示平行于立方体面的平面叫做(100)面,对角横穿3个顶点的面叫做(111)面。

图4-2 晶体面中央立方体结构。 立方体晶体的(100)和(111)面 单晶硅电池的绒面通常是利用某些化学腐蚀剂对其表面进行腐蚀而形成,它们对硅的不同晶面有不同的腐蚀速度,对(100)面腐蚀较快,对(111)面腐蚀的慢,因此这种腐蚀方法也称为各向异性腐蚀。如果将(100)作为电池的表面,经过腐蚀、在表面会出现以四个(111)面形成的角锥体。这些角锥体远看像丛山一样密布于电池表面,肉眼看来,好象是一层丝绒,因此人们称之为“绒面”。

我们将(100)晶向上腐蚀速率与(111)晶向腐蚀速率比值定义为各向异性因子(Anisotropic Factor, AF)。当AF=1时,腐蚀硅片可以得到平坦的表面。当制绒液在<100>方向上具有相对高的腐蚀速率(0.6um/min )和AF=10的各向异性系数时在硅片表面上得到最高的角锥体密度,能够腐蚀出高质量绒面。腐蚀碱溶液的浓度、温度对AF有显著的影响。如前所述,一般说来,低浓度的碱溶液和较低的溶液温度具有较高的AF值;反之,高浓度的碱溶液和较高的溶液温度则对应低的AF数值。因此,前者用于制绒工艺,后者用于抛光工艺。

2.角锥体形成的因素分析

从碱腐蚀硅的化学原理可知,伴随腐蚀的进行,硅表面有气泡产生,气泡的尺寸与溶液粘度、溶液表面张力有关。气泡的大小和在硅表面的附着时间,对表面反应的进行乃至腐蚀形成的表面形貌有直接影响。

在此我们引入接触角的定义,接触角为液-固-气界面相交点,液-气界面的切线与液-固界面切线的夹角。如图1.3。

如图4-3液体与固体表面的接触角

定温定压平衡时液体在固体表面的接触角决定于固-气相、固-液相和液-气相

??90。时,??180。??90。时,三个界面张力的大小关系。液体润湿固体表面良好,

。??180液体润湿固体表面不好,时,完全不润湿。纯净的硅表面是不能与水润

。湿的(疏水的)。对于氢氧化钠水溶液,它和硅表面的润湿角??90。并与溶液浓

度有关。溶液中加入异丙醇可以改善润湿程度,在这里,起到表面活性剂的作用。

在绒面腐蚀过程中,在硅片表面会有气泡产生,气泡扩大到一定程度后,浮力大于表面附着力,气泡便脱离硅片表面。腐蚀液又重新与硅表面接触发生腐蚀,重复上述过程。周而复始,硅片表面逐层被腐蚀掉,并形成与表面晶向、溶液浓度、粘度、温度、腐蚀时间等因素相关的表面腐蚀形貌。

在腐蚀发生的初始时刻,溶液与硅表面的接触角对腐蚀核的形成,以及绒面角锥体覆盖率有着重要影响。良好的润湿有利于提高覆盖率。众所周知,异丙醇增加硅表面的可湿润性,但是硅的腐蚀速率会随着浓度的增加而大幅度地降低。适当浓度的异丙醇在溶液中起到消泡的作用。

腐蚀过程中气泡在硅片表面的演变方式决定了绒面角锥体的形成,变化和最终形貌。在润湿良好的表面上,一种腐蚀形成绒面的气泡模型如图4-4所示.

如图4-4 液体表面张力对腐蚀气泡和角锥体尺寸的影响,表面张力(a)<(b)

如图4-5不同表面张力情况下液体中的固体表面气泡形式,(a)液体表面张力小(b)液体表面张力大

对于表面张力较小的情形(a),腐蚀产生的气泡在角锥体成核的地方很容易从角锥体尖端逃逸,气泡尺寸较小。因此,腐蚀形成绒面的角锥体尺寸也较小。对于表面张力较大的情形(b),气泡不容易离开硅片表面,在角锥体成核的地方形成气泡隔离,气泡要长大到浮力大于表面附着力时,才从硅片表面离开。因此,

联系合同范文客服:xxxxx#qq.com(#替换为@)