向湘君毕业论文1

发布时间 : 星期三 文章向湘君毕业论文1更新完毕开始阅读

SiF4+2HF=H2[SiF6] 扩散:扩散是一种由微粒的热运动所引起的物质输运的过程,可以是一种或多种物质在气、液、固体的同一相内或不同相间进行。扩散的驱动力实质是化学势梯度。固体中扩散微观基质即扩散基质可以概括为3种:填隙原子机制、空位机制、交换机制。

刻蚀:刻蚀是采用化学或是物理的方法,有选择地从半导体材料表面除去不需要的材料的过程。通常是刻蚀技术分为湿法腐蚀和干法刻蚀。

1.

湿法腐蚀是通过化学溶液与被刻蚀材料发生反应而去除被刻蚀部分

的方法。但其特点是各向同性,存在侧向腐蚀而产生底切现象,导致线宽失真等问题,所以目前不用。 2.

干法刻蚀是把材料的被刻蚀表面暴露于等离子体中,等离子体通过

光刻胶中开出的窗口与材料发生物理或化学反应从而去除暴露的材料。分为物理性刻蚀和化学性刻蚀。

去磷硅玻璃(PSG):磷硅玻璃是硅片在扩散时的化学反应导致在硅片表面形成一层含有磷元素的二氧化硅,称之为磷硅玻璃。除去这层磷硅玻璃主要是用氢氟酸来腐蚀,因为氢氟酸具有溶解二氧化硅的特性。

减反射膜:PECVD(等离子体增强化学气相沉积)技术原理是低温等离子体作为能量源,样品置于低气压下辉光放电的阴极上,利用辉光放电(或另加发热体) 使样品上升到预定的温度,然后通入适量的反应气体,气体经过一系列化学反应和等离子体反应,在样品表面固态薄膜。

丝网印刷:丝网印刷是太阳能电池制造的重要工艺,它质量的好坏会对太阳能电池的性能特别是电性能产生重要影响。太阳能电池的印刷电极,最早是采用真空镀或化学电镀技术制作现普遍采用丝网印刷技术,即通过特殊的印刷机和模板将银浆、铝浆印刷在太阳电池的正、背面以形成正负电极引线,再经过低温烘烤、高温烧结,最终制成太阳电池。

电极烧结:太阳电池片目前采用只需一次烧结的共烧工艺原理,同时形成上下电极的欧姆接触(欧姆接触:金属与半导体的接触,接触面的电阻值小于半导体电阻值)银浆、银铝浆、铝浆印刷过的硅片,经过烘干使有机溶剂完全挥发,膜厚收缩成为固状物紧密黏附在硅片上,这时可以看到金属电极材料层和硅片接

触在一起。

第三章 硅片的清洗与制绒

3.1超声波清洗

3.1.1 超声波清洗的原理

超声波清洗机理是:换能器将功率超声频源的声能转换成机械振动并通过清洗槽壁向槽子中的清洗液辐射超声波,槽内液体中的微气泡在声波的作用下振动,当声压或声强达到一定值时,气泡迅速增长,然后突然闭合,在气泡闭合的瞬间产生冲击波使气泡周围产生1012-1013pa的压力及局部调温,这种超声波空化所产生的巨大压力能破坏不溶性污物而使他们分化于溶液中,蒸汽型空化对污垢的直接反复冲击,一方面破坏污物与清洗件表面的吸附,另一方面能引起污物层的疲劳破坏而被驳离,气体型气泡的振动对固体表面进行擦洗,污层一旦有缝可钻,气泡立即“钻入”振动使污层脱落,由于空化作用,两种液体在界面迅速分散而乳化,当固体粒子被油污裹着而粘附在清洗件表面时,油被乳化、固体粒子自行脱落,超声在清洗液中传播时会产生正负交变的声压,形成射流,冲击清洗件,同时由于非线性效应会产生声流和微声流,而超声空化在固体和液体界面会产生高速的微射流,所有这些作用,能够破坏污物,除去或削弱边界污层,增加搅拌、扩散作用,加速可溶性污物的溶解,强化化学清洗剂的清洗作用。由此可见,凡是液体能浸到且声场存在的地方都有清洗作用,尤其是采用这一技术后,可减少化学溶剂的用量,从而大大降低环境污染。 3.1.2 超声清洗的优越性

高精度:由于超声波的能量能够穿透细微的缝隙和小孔,故可以应用与任何零部件或装配件清洗。被清洗件为精密部件或装配件时,超声清洗往往成为能满足其特殊技术要求的唯一的清洗方式;

快速:超声清洗相对常规清洗方法在工件除尘除垢方面要快得多。装配件无须拆卸即可清洗。超声清洗可节省劳动力的优点往往使其成为最经济的清洗方式;

一致:无论被清洗件是大是小,简单还是复杂,单件还是批量或在自动流水线上,使用超声清洗都可以获得手工清洗无可比拟的均一的清洁度。 3.1.3 影响超声清洗效果的因素

1.清洗时间:清洗时间是影响超声波清洗效果的一个主要因素,清洗时间取决于工件的污染程度以及清洁度要求,典型的清洗时间是 2-10 分钟,只有少数工件能够在很短的时间里面清洗干净。

2.清洗液温度:一般来说,超声波在30℃-40℃时的空化效果最好。清洗剂则温度越高,作用越显著。通常实际应用超声波时,采用50℃-70℃的工作温度。

3.采用的清洗液:考虑到清洗液的物理特性对超声清洗的影响,其中蒸汽压、表面张力、黏度以及密度应为最显着的影响因素。温度能影响这些因素,所以它也会影响空化作用的效率。

4.工件的设计外形

5.超声波频率:超声波频率越低,在液体中产生的空化越容易,产生的力度大,作用也越强,适用于工件(粗、脏)初洗。频率高则超声波方向性强,适用于精细的物件清洗。

6.超声功率密度:功率密度=发射功率(W)/发射面积(cm2)通常≥0.3W/cm2,超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。但对于精密的、表面光洁度甚高的物件,采用长时间的高功率密度清洗会对物件表面产生“空化”腐蚀。

7.清洗装夹方式:工件的清洗载入方式,在清洗设备的设计阶段。必须充分考虑工件清洗时候的载入方式,一些较大的工件,内部比较难以清洗的工件(例如一些铸造件),一个原则是只能载入清洗液的一半重量的工件清洗,在大多数案例中,分两次载入较少的工件清洗比一次载入较大的工件清洗效

3.2硅片的制绒

在太阳电池中,硅片表面制备绒面可以有效降低太阳电池的表面反射率,入射光在电池表面多次反射延长了光程,增加了对红外光子的吸收(如图2.1),而且有较多的光子在P-N结附近产生光生载流子,从而增加了光生载流子的收集几率;另外,同样尺寸的基片,绒面电池的P-N结面积较大,可以提高短路电流,转换效率也有相应的提高。因此,在减少光的损失方面,电池的织构化技术和减少反射技术起着重要作用。

制绒目的:1、去除硅片表面机械损伤层;

2、形成起伏不平的绒面,增加硅对太阳光的吸收。

利用陷光原理,减少光的反射,提高短路电流(Isc),增加PN结面积,最终提高

电池的光电转换效率。 陷光原理:

当光入射到一定角度的斜面(金字塔理论角度70.5°),光会反射到另一角度的斜面,形成二次或多次吸收,从而增加吸收率。

绒面陷光示意图

图3-1 绒面陷光示意图

第四章 单晶、多晶的制绒工艺

太阳电池的表面反射率是影响太阳电池光电转换效率的重要因素之一。通过制绒,在太阳电池表面织构化可以有效降低太阳电池的表面反射率,入射光在电池表面多次反射延长了光程,增加了对红外光子的吸收,而且有较多的光子在p-n结附近产生光生载流子,从而增加了光生载流子的收集几率;另外同样尺寸的基片,绒面电池的p-n结面积较大,可以提高短路电流,效率也有相应的提高。

4.1片表面机械损伤层的腐蚀

由于硅片在切割过程中表面留有大约10~20μm的锯后损伤层,对制绒有很大影响,若损伤层去除不足可能会残留切割时所遗留的杂质,在制绒的时候也会因为损伤层的缘故而导致金字塔的无法出现,而且会在后续工序中继续破坏硅片表面,导致电池各类参数不符合要求。因此在制绒前必须将其除去。

在去除损伤层(粗抛)的时候,一般采用浓度为20%的NaOH溶液在80~90℃的条件下腐蚀,在高浓度的碱溶液的腐蚀速率可以达到6~10um/min,由于此时的腐蚀速度过快,所以在达到去除损伤层的基础上尽量减短初抛时间,以防硅片被腐蚀过薄。

在初抛过程中产生的Na2SiO3的热导性很差。一般硅酸钠超过一定的量时,腐蚀产生的热量超过从溶液表面和容器侧面所散发的热量,使溶液的温度持续升高。所以初抛液必须定期更换或排出部分溶液。

4.2 制绒腐蚀的原理

联系合同范文客服:xxxxx#qq.com(#替换为@)