向湘君毕业论文1

发布时间 : 星期一 文章向湘君毕业论文1更新完毕开始阅读

能发电的家庭利益,鼓励家庭进行太阳能发电。日本已于1992年4月实现了太阳能发电系统同电力公司电网的联网,已有一些家庭开始安装太阳能发电设备。日本通产省从1994年开始以个人住宅为对象,实行对购买太阳能发电设备的费用补助三分之二的制度。要求第一年有1000户家庭、2000年时有7万户家庭装上太阳能发电设备。据日本有关部门估计日本2100万户个人住宅中如果有80%装上太阳能发电设备,便可满足全国总电力需要的14%,如果工厂及办公楼等单位用房也进行太阳能发电,则太阳能发电将占全国电力的30%-40%。当前阻碍太阳能发电普及的最主要因素是费用昂贵。为了满足一般家庭电力需要的3千瓦发电系统,太阳能空调,需600万至700万日元,还未包括安装的工钱。有关专家认为,至少要降到100万到200万日元时,太阳能发电才能够真正普及。降低费用的关键在于太阳电池提高变换效率和降低成本。不久前,美国德州仪器公司和SCE公司宣布,它们开发出一种新的太阳电池,每一单元是直径不到1毫米的小珠,它们密密麻麻规则地分布在柔软的铝箔上,就像许多蚕卵紧贴在纸上一样。在大约50平方厘米的面积上便分布有1,700个这样的单元。这种新电池的特点是,虽然变换效率只有8%-10%,但价格便宜。而且铝箔底衬柔软结实,可以像布帛一样随意折叠且经久耐用,挂在向阳处便可发电,非常方便。据称,使用这种新太阳电池,每瓦发电能力的设备只要15至2美元,而且每发一度电的费用也可降到14美分左右,完全可以同普通电厂产生的电力相竞争。每个家庭将这种电池挂在向阳的屋顶、墙壁上,每年就可获得一二千度的电力。进一步的提高太阳电池的转换效率和降低太阳电池的生产成本是我们现阶段不断研究的课题。提高太阳电池的转换效率的方法,有在太阳电池中减少能量的损失。损失有两种类型:光学损失和电学损失,其中光学损失主要体现以下3种方式:1.硅表面的反射损失,经处理的抛光硅片反射率可达30%以上;2.上电极的遮光损失,作为上极电极的金属栅线要遮掉5%~15%的入射光;3.进入硅片能量大于禁带宽度的光子在电池背面的投射。三种光学性质的损失中,硅表面的反射损失最多。通过在太阳电池表面制备绒面可以有效降低太阳电池的表面反射率。

1.2本论文所研究的主要内容

本论文主要从实用、商品化太阳电池的生产与工艺研究出发,对太阳电池生

产制绒的研究及技术改进进行了全方位的描述。在第二章中着重对制作太阳电池工艺过程进行了系统的阐述,并对某些工艺进行了工艺条件的实验,通过对比得到结论,总结提出了提高效率、降低成本的个人看法。在三、四章主要从理论、图片和实际出发,提出了在太阳电池生产工艺中制绒工艺的重要性和其改进方法。本文主要介绍清洗制绒的基本原理及工艺流程,并结合个人工作期间遇到的来料、制绒深度的控制、人为不当操作等问题。

第二章 太阳电池基础及其制作工艺

2.1太阳电池基本构造和工作原理

太阳电池的基本构造

a. 太阳电池正面俯视图 b.太阳电池部分立体图 c.相应的断面图

其中: 1 - 太阳电池主栅线 2 - 太阳电池副栅线 3 - 太阳电池背电场 4 - 减反射膜

5 - 扩散层 6 – 其区层

图2—1 太阳电池的基本结构图

太阳电池工作原理

太阳电池是利用半导体光生伏打效应(Photovoltaic Effect)的半导体器

件。半导体按其是否含有杂质及杂质成分,分为本征半导体、非本征半导体。高纯硅是一种本征半导体,在常温下只有为数极少的电子穴对参与导电,部分自由

电子遇到空穴会迅速恢复合成共价键电子结构,所以硅的本征电阻率比较大。但如果在高纯中掺入极微量的电活性杂质,其电阻率会显著下降。当向硅中掺入亿分之一的硼,其电阻率就会降为原来的千分之一。掺入对杂质不仅改变电导率,而且改变导电型号。

当在硅中掺入磷、砷、锑等5价元素(又称施主杂质),它们的价电子多于价轨道,是多电子原子,在形成共价键之外,有多余的电子,位于共价键之外的电子受原子核的束缚力要比组成共价键的电子小得多,只要得到很少的能量,就能成为自己电子。同时,该5价的元素的原子成为带正电阳离子。该材料以电子为多数载流子,称之为N型半导体。N型半导体也有空穴,但数量少,称为少数载流子。如果的在硅中掺入硼、镓、铝等3价元素(又称受主杂质),它的价电子数目少于价轨道,是缺电子原子,在形成的共价键内出现空穴,位于共价键内的电子只需外界给很少能量,就会摆脱束缚过来填充,形成新的空穴。同时该3价元素的原子成为带负电的阴离子。该材料以空穴为多数载流子,称为P型半导体。P型半导体中也有自由电子,但数量很少,称为少数载流子。当P型半导体和N型半导体紧密接触在一起时,在交界面上就会有自由电子和空穴的浓度差,空穴向N型半导体扩散,自由电子向P型半导体扩散,在交界面附近,空穴和自由电子复合,于是在交界面附近,P型半导体带负电,N型半导体带正电,形成一个称为势垒电场的内建电场,其方向从带正电的N区指向带负电的P区,电场的形成阻碍了自由电子和空穴的扩散,从而形成一个稳定的电场。当太阳光照射到P-N结上时,光能被吸收后,在导带和价带中产生非平衡载流子——电子空穴。它们分别在P区的N区形成浓度梯度,开始向P-N结作扩散运动。到达边界时受P-N结势垒区存在的强内建电场作用下将空穴推向P区,电子推向N区,在势垒区的内建电场下,各向相反方向运动。离开势垒区,结果使得P区电势升高N区电势降低,P-N结两端形成光生电动势,这就是P-N的光生伏特效应。具有光生伏特效应的PN结实际上就相当于一个电源,接上用电器后就能工作,这就是太阳电池的工作原理。

图2-2 太阳电池工作原理图

2.2太阳电池的简介

制作绒面 扩散 刻蚀 去PSG 检测分选 电极烧结 丝网印刷 PECVD

图2-3 太阳电池制作工序

制作绒面:在太阳能电池中,其能量的损失有两种类型,光学损失、电学损失,其中光学损失主要的以下几种:1硅表面上的反射损失,抛光后的硅片反射率在30%发上;2上电极的遮光损失,作为上电极的金属栅线要遮盖5%-15%的入射光;3进入硅片能量大于禁带宽度的光子在家电池背面的投身。制绒是减少这些损失的方法之一,通过在硅片表面的制作绒面可以有效的降低太阳能电池的表面反射率,入射光在电池表面多次反射延长了光程,增加了对红外光的吸收,而且有更多的光子在P-N结附近会产生光生载流子,从而增加了光生载流子的收集机率;另外同样尺寸的硅片,绒面电池P-N结的面积较大,可以提高短路电流,转换效率也会有相应的提高。

酸性制绒(主要适用于多晶硅)

Si+4HNO3=SiO2+4NO2+2H2O SiO2+4HF=SiF4+2H2O

联系合同范文客服:xxxxx#qq.com(#替换为@)