人教A版高中数学选修2-3知识点总结

发布时间 : 星期日 文章人教A版高中数学选修2-3知识点总结更新完毕开始阅读

高中数学 选修2-3知识点

第一章 计数原理 知识点:

1、分类加法计数原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+……+MN种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N个步骤,做第一 步有m1种不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那么完成这件事共有 N=M1M2...MN 种不同的方法。

3、排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取......出m个元素的一个排列 4、排列数:

Am?n(n?1)?(n?m?1)?n!(m?n,n,m?N)

(n?m)!5、组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

mAmn(?)1?(n(??1)1)mmn!n!An1?)?nm?m?nnn(n6、组合数:CC??mm??CC?n?nm!m!(nAmm!m!(?nm?)!m)!Am

mmnnn?mCmn?Cn;

1mCm?n?Cmn?Cn?1

n0n1n?12n?22rn?rrnn (a?b)?Ca?Cab?Cab?…?Cab?…?Cbnnnnn7、二项式定理:

rn?rr8、二项式通项公式 展开式的通项公式:T?Cab(r?0,1……n)r?1n

第二章 随机变量及其分布 知识点:

1、随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X、Y等或希腊字母 ξ、η等表示。 2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.

3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,..... ,xi ,......,xn

X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列

4、分布列性质① pi≥0, i =1,2, … ;② p1 + p2 +…+pn= 1.

5、二点分布:如果随机变量X的分布列为:

其中0

6、超几何分布:一般地, 设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(n≤N)件,这n件中所含这类物品件数X是一个离散型随机变量,

kn?kCMCN?M则它取值为k时的概率为P(X?k)?(k?0,1,2,nCN,m),

其中m?min?M,n?,且n≤N,M≤N,n,M,N?N*E(?)?nM(必记忆)

N7、条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B的概率 8、公式:

P(AB)P(B|A)?,P(A)?0.P(A) 9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互

独立事件。P(A?B)?P(A)?P(B)

10、n次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验

11、二项分布: 设在n次独立重复试验中某个事件A发生的次数,A发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试验中

kkn?kP(??k)?Cnpq(其中 k=0,1, ……,n,q=1-p )

于是可得随机变量ξ的概率分布如下:

这样的随机变量ξ服从二项分布,记作ξ~B(n,p) ,其中n,p为参数 12、数学期望:一般地,若离散型随机变量ξ的概率分布为

则称 Eξ=x1p1+x2p2+…+xnpn+… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。

13、方差:D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2 +......+(xn-Eξ)2·Pn 叫随机变量ξ的均方差,简称方差。

14、集中分布的期望与方差一览:

两点分布 二项分布,ξ ~ B(n,p) 15、正态分布:

若概率密度曲线就是或近似地是函数

期望 方差 Dξ=pq,q=1-p Dξ=qEξ=npq,(q=1-p) Eξ=p Eξ=np f(x)?

1e2???(x??)22?2,x?(??,??)

(??0)是参数,分别表示总体的平均数与标准差. 的图像,其中解析式中的实数?、?则其分布叫正态分布记作:N(?,?),f( x )的图象称为正态曲线。 16、基本性质:

①曲线在x轴的上方,与x轴不相交.

②曲线关于直线x=?对称,且在x=?时位于最高点.

③当时x??,曲线上升;当时x??,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.

④当?一定时,曲线的形状由?确定.?越大,曲线越“矮胖”,表示总体的分布越分散;?越小,曲线越“瘦高”,表示总体的分布越集中.

⑤当σ相同时,正态分布曲线的位置由期望值μ来决定. ⑥正态曲线下的总面积等于1. 17、 3?原则:

从上表看到,正态总体在 (??2?,??2?) 以外取值的概率 只有4.6%,在 (??3?,??3?)以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况

在一次试验中几乎是不可能发生的.

1.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B 的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这

21,每次考科目B成绩合格的概率均为。假设他在32这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X。 (1)求X的分布列和均值;

项考试,已知他每次考科目A成绩合格的概率均为(2)求该同学在这项考试中获得合格证书的概率。

2.济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人浏览这四个景点的概率分别是0.3,0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设?表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。

(1)求?=0对应的事件的概率; (2)求?的分布列及数学期望。 3. 袋子中装有8个黑球,2个红球,这些球只有颜色上的区别。

(1)随机从中取出2个球,?表示其中红球的个数,求?的分布列及均值。

(2)现在规定一种有奖摸球游戏如下:每次取球一个,取后不放回,取到黑球有奖,第一个奖100元,第二个奖200元,…,第k个奖k?100元,取到红球则要罚去前期所有奖金并结束取球,按照这种规则,取球多少次比较适宜?说明理由。

第三章 统计案例 知识点:

1、独立性检验

假设有两个分类变量X和Y,它们的值域分另为{x1, x2}和{y1, y2},其样本频数列联表为: x1 x2 总计

y1 a c a+c

y2 b d b+d

总计 a+b c+d a+b+c+d

若要推断的论述为H1:“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度。具体的做法是,由表中的数据算出随机变量K^2的值(即K的平方) K2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)],其中n=a+b+c+d为样本容量,K2的值越大,说明“X与Y有关系”成立的可能性越大。

K2≤3.841时,X与Y无关; K2>3.841时,X与Y有95%可能性有关;K2>6.635时X与Y有99%可能性有关

2、回归分析

??a?bx 回归直线方程y?xy?n?x?y?(x?x)(y?y)SP??a?y?bx 其中b?,

1SS?(x?x)?x?n(?x)222x1

联系合同范文客服:xxxxx#qq.com(#替换为@)