电气化铁路供电系统设计

发布时间 : 星期三 文章电气化铁路供电系统设计更新完毕开始阅读

电气化铁路供电系统设计

(4)自耦变压器供电方式(AT供电方式)

AT供电方式是20世纪70年代才发展起来的一种供电方式。它既能有效地减轻牵引网对通信线的干扰,又能适应高速、大功率电力机车运行,故近年来在我国得到了迅速发展。这种供电方式是每隔10km左右在接触网与正馈线之间并联接入一台自耦变压器,绕组与钢轨相接。自耦变压器将牵引网的供电电压提高一倍,而供给电力机车的电压仍是25kv,其工作原理如图1.5所示。电力机车由接触网(T)受电后,牵引电流一般由钢轨(R)流回,由于自耦变压器的作用,钢轨流回的电流经自耦变压器绕组和正馈线(F)流回变电所。当自耦变压器的一个绕组流过牵引电力时,其另一个绕组感应出电流供给电力机车,因此实际上当机车负荷电力为I时,由于自耦变压器的作用,流经接触网(T)和正馈线(F)的电流为I/2。

图1.5 AT供电方式原理图

自耦变压器供电方式牵引网阻抗很小,约为直接供电方式的1/4,因此电压损失小,电能损耗低,供电能力大,供电距离长,可达40~50km。由于牵引变电所间的距离加大,减少了牵引变电所数量,也减少了电力系统对电气化铁路供电的工程和投资。但由于牵引变电所和牵引网比较复杂,加大了电气化铁路自身的投资,这种供电方式一般在重载铁路、高速铁路等负荷大的电气化铁路上使用。由于牵引负荷电流在接触网(T)和正馈线(F)中方向相反,因而对邻近的通信线路干扰很小,其防干扰效果与BT供电方式相当。

(5)同轴电力电缆供电方式(CC供电方式)

CC供电方式是一种新型的供电方式。同轴电力电缆沿铁路线路敷设,其内部芯线昨晚馈电线与接触网连接,外部导体作为回流线与钢轨相接。每隔5~10km作为一个分段,如图1.6所示。由于馈电线与回流线在同一电缆中,间隔很小,而同轴布置,使互感系数增大,所以同轴电力电缆的阻抗比接触网和钢轨的阻抗小得多,牵引电流和回流几乎全部经由同轴电力电缆中流过。因此电缆芯线与外部导体电流相等,方向相反,二者形成的磁场相互抵消,对邻近的通信线路几乎无干扰。由于阻抗小,因而供电距离长。但由于同轴电力电缆造价高,投资大,现仅在一些特别困难的区段采用。

6

电气化铁路供电系统设计

图1.6 CC供电方式原理图

二、 牵引网的供电方式 (1)单边供电

我国单线电气化铁路全部采用单边供电,如图1.7所示。在复线区段当馈电线较短时也可以采用单边供电。单边供电与其他区段无联系,继电保护设置简单。

图1.7单边供电方式原理图

(2)上下行并联供电

在复线电气化区段的供电臂末端设有分区所,将上下行接触网通过断路器实行并联供电,如图1.8所示。这种供电方式的优点是,它能均衡上下行供电臂的电流,降低接触网损耗,提高电压水平,在有轻重车方向和线路有较大坡道情况下,效果更为显著。我国复线电气化铁路大多采用这种供电方式。

] SS1 A A C C SP C C SS2 B B 图1.8 上下行并联供电方式原理图

(3)双边供电

双边供电是由相邻两个牵引变电所同时向其间的接触网供电,在供电臂的末端由分区所连接起来,如图1.9所示。其优点是由两个牵引变电所供电,均衡了负荷,降低了接触网损耗,提高了电压水平。目前我国交流电气化铁路还未采用这种供电方式,双边供电方式多用在城市轨道交通的直流牵引供电系统中。

7

电气化铁路供电系统设计

图1.9双边供电方式原理图

1.5接触网

(1)接触网的组成

接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。

接触悬挂包括接触线、吊弦、承力索以及连接零件。接触悬挂通过支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给电力机车。

支持装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。根据接触网所在区间、站场和大型建筑物而有所不同。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒式绝缘子及其它建筑物的特殊支持设备。

定位装置包括定位管和定位器,其功用是固定接触线的位置,使接触线在受电弓滑板运行轨迹范围内,保证接触线与受电弓不脱离,并将接触线的水平负荷传给支柱。

支柱与基础用以承受接触悬挂、支持和定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。我国接触网中采用预应力钢筋混凝土支柱和钢柱,基础是对钢支柱而言的,即钢支柱固定在下面的钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。预应力钢筋混凝土支柱与基础制成一个整体,下端直接埋入地下。

(2)接触网的电压等级

接触网的电压等级:工频单相交流制:25KV (3)接触悬挂的类型

接触网的分类大多以接触悬挂的类型来区分。我们所讲的接触悬挂的分类是对接触网的每个锚段而言的。接触悬挂的种类较多,一般根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。

简单接触悬挂(以下简称简单悬挂)系由一根接触线直接固定在支柱支持装置上的悬挂形式。国内外对简单悬挂做了不少研究和改进。我国现采用的带补偿装置的弹性简单悬挂系在接触线下锚处装设了张力补偿装置,以调节张力和弛度的变化。在悬挂点上加装8~16M长的弹性吊索,通过弹性吊索悬挂接触线,这就减少了悬挂点处产生的硬点,改善了取流条件。另外跨距适当缩小,增大接触线的张力去改善弛度对取流的影响。

链形悬挂的接触线是通过吊弦悬挂在承力索上。承力索悬挂于支柱的支持装置上,使接触线在不增加支柱的情况下增加了悬挂点,利用调整吊弦长度,使接触线在整个跨

8

电气化铁路供电系统设计

距内对轨面的距离保持一致。链形悬挂减小了接触线在跨距中间的弛度,改善了弹性,增加了悬挂重量,提高了稳定性,可以满足电力机车高速运行取流的要求。

链形悬挂比简单悬挂得到了较好的性能,但也带来了结构复杂、造价高、施工和维修任务量大等许多问题。

链形悬挂分类方法较多,按悬挂链数的多少可分为单链形,双链形和多链形(又称三链形)。目前我国采用单链形悬挂。

链形悬挂根据线索的锚定方式(即线索两端下锚的方式),可分为下列几种方式未补偿链形悬挂、半补偿链形悬挂、全补偿链形悬挂。 (4)接触网供电方式

1)接触网供电方式有单边、双边供电和越区供电。 2)单边和双边供电为正常的供电方式。

单边供电:供电臂只从一端的变电所取得电流的供电方式。 双边供电:供电臂从两端相邻的变电所取得电流的供电方式。 3)越区供电是一种非正常供电方式(也称事故供电方式)。

越区供电是当某一牵引变电所因故障不能正常供电时,故障变电所担负的供电臂,经开关设备成分区亭同相邻的供电臂接通,由相邻牵引变电所进行临时供电。

复线区段的供电情况与上述类同,但牵引变电所馈出线有四条,分别向两侧上、下行接触网供电。牵引变电所同一侧上、下行实现并联供电,提高供电臂末端电压。越区供电时,通过分区亭内的开关设备去实现。 (5)接触网的特点及要求

接触网担负着把从牵引变电所获得的电能直接输送给电力机车使用的重要任务。因此接触网的质量和工作状态将直接影响着电气化铁道的运输能力。

由于接触网是露天设置,没有备用,线路上的负荷又是随着电力机车的运行而沿接触线移动和变化的,对接触网提出以下要求:

1)在高速运行和恶劣的气候条件下,能保证电力机车正常取流,要求接触网在机械结构上具有稳定性和足够的弹性。

2)接触网设备及零件要有互换性,应具有足够的耐磨性和抗腐蚀能力并尽量廷长设备的使用年限。

3)要求接触网对地绝缘好,安全可靠。

4)设备结构尽量简单,便于施工,有利于运营及维修。在事故情况下,便于抢修和迅速恢复送电。

5)尽可能地降低成本,特别要注意节约有色金属及钢材。

总的来说,要求接触网无论在任何条件下,都能保证良好地供给电力机车电能,保证电力机车在线路上安全,高速运行,并在符合上述要求的情况下,尽可能地节省投资、结构合理、维修简便、便于新技术的应用。支柱及基础

9

联系合同范文客服:xxxxx#qq.com(#替换为@)