数字信号处理试题及参考答案

发布时间 : 星期三 文章数字信号处理试题及参考答案更新完毕开始阅读

X6k64=fft(x6nT); %计算x6nT的64点DFT X6k64=fftshift(X6k64); %将零频率移到频谱中心 Tp=N*T;F=1/Tp; %频率分辨率F

k=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心) subplot(3,1,3);stem(fk,abs(X6k64),'.'); box on%绘制8点DFT的幅频特性图 title('(6a) 64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度'); axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])

实验程序运行结果

实验3程序exp3.m运行结果如图10.3.1所示。

数字信号处理第 17 页 共 16 页

图10.3.1

(二)、IIR数字滤波器设计及软件实现

(1)信号产生函数mstg清单

function st=mstg

%产生信号序列向量st,并显示st的时域波形和频谱

%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600 N=1600 %N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间 t=0:T:(N-1)*T;k=0:N-1;f=k/Tp; fc1=Fs/10; fc2=Fs/20; fc3=Fs/40;

%第1路调幅信号的载波频率fc1=1000Hz, %第2路调幅信号的载波频率fc2=500Hz %第3路调幅信号的载波频率fc3=250Hz,

fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号 xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号 xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号 st=xt1+xt2+xt3; %三路调幅信号相加 fxt=fft(st,N); %计算信号st的频谱

%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================

数字信号处理第 18 页 共 16 页

subplot(3,1,1)

plot(t,st);grid;xlabel('t/s');ylabel('s(t)');

axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形') subplot(3,1,2)

stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]); xlabel('f/Hz');ylabel('幅度') (2) 思考题

(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。

(2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。

(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。

提示:AM信号表示式:s(t)?[1?cos(2?f0t)]cos(2?fct)。

(3)滤波器参数及实验程序清单

1、滤波器参数选取

观察图10.4.1可知,三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。带宽(也可以由信号产生函数mstg清单看出)分别为50Hz、100Hz、200Hz。所以,分离混合信号st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:

对载波频率为250Hz的条幅信号,可以用低通滤波器分离,其指标为 带截止频率

fp?280Hz,通带最大衰减?p?0.1dBdB;

?450Hz,阻带最小衰减?s?60dBdB,

阻带截止频率fs对载波频率为500Hz的条幅信号,可以用带通滤波器分离,其指标为 带截止频率

fpl?440Hz,fpu?560Hz,通带最大衰减?p?0.1dBdB;

?275Hz,fsu?900Hz,Hz,阻带最小衰减?s?60dBdB,

阻带截止频率fsl对载波频率为1000Hz的条幅信号,可以用高通滤波器分离,其指标为 带截止频率

fp?890Hz,通带最大衰减?p?0.1dBdB;

?550Hz,阻带最小衰减?s?60dBdB,

阻带截止频率fs说明:(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波器过渡带宽尽可能宽。

(2)与信号产生函数mstg相同,采样频率Fs=10kHz。

数字信号处理第 19 页 共 16 页

(3)为了滤波器阶数最低,选用椭圆滤波器。

按照图10.4.2 所示的程序框图编写的实验程序为exp4.m。 2、实验程序清单

%实验4程序exp4.m

% IIR数字滤波器设计及软件实现 clear all;close all

Fs=10000;T=1/Fs; %采样频率

%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;

%低通滤波器设计与实现========================================= fp=280;fs=450;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; ?指标(低通滤波器的通、阻带边界频) [N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp [B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A y1t=filter(B,A,st); %滤波器软件实现 % 低通滤波器设计与实现绘图部分 figure(2);subplot(3,1,1);

myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线 yt='y_1(t)';

subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形 %带通滤波器设计与实现==================================================== fpl=440;fpu=560;fsl=275;fsu=900;

wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;

[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp [B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A y2t=filter(B,A,st); %滤波器软件实现 % 带通滤波器设计与实现绘图部分(省略)

%高通滤波器设计与实现================================================ fp=890;fs=600;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; ?指标(低通滤波器的通、阻带边界频) [N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和A y3t=filter(B,A,st); %滤波器软件实现 % 高低通滤波器设计与实现绘图部分(省略)

3 实验程序运行结果

实验4程序exp4.m运行结果如图104.2所示。由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅

数字信号处理第 20 页 共 16 页

联系合同范文客服:xxxxx#qq.com(#替换为@)