引线键合工艺

发布时间 : 星期日 文章引线键合工艺更新完毕开始阅读

MEMS器件引线键合工艺(wire bonding)

2007-2-1 11:58:29

以下介绍的引线键合工艺是指内引线键合工艺。MEMS芯片的引线键合的主要技术仍然采用IC芯片的引线键合技术,其主要技术有两种,即热压键合和热超声键合。

引线键合基本要求有:

(1)首先要对焊盘进行等离子清洗;

(2)注意焊盘的大小,选择合适的引线直径; (3)键合时要选好键合点的位置;

(4)键合时要注意键合时成球的形状和键合强度; (5)键合时要调整好键合引线的高度和跳线的成线弧度。

常用的引线键合设备有热压键合、超声键合和热超声键合。

(1)热压键合法:热压键合法的机制是低温扩散和塑性流动(Plastic Flow)的结合,使原子发生接触,导致固体扩散键合。键合时承受压力的部位,在一定的时间、温度和压力的周期中,接触的表面就会发生塑性变形(Plastic Deformation)和扩散。塑性变形是破坏任何接触表面所必需的,这样才能使金属的表面之间融合。在键合中,焊丝的变形就是塑性流动。该方法主要用于金丝键合。

(2)超声键合法:焊丝超声键合是塑性流动与摩擦的结合。通过石英晶体或磁力控制,把摩擦的动作传送到一个金属传感器(Metal“HORN”)上。当石英晶体上通电时,金属传感器就会伸延;当断开电压时,传感器就会相应收缩。这些动作通过超声发生器发生,振幅一般在4-5个微米。在传感器的末端装上焊具,当焊具随着传感器伸缩前后振动时,焊丝就在键合点上摩擦,通过由上而下的压力发生塑性变形。大部分塑性变形在键合点承受超声能后发生,压力所致的塑变只是极小的一部分,这是因为超声波在键合点上产生作用时,键合点的硬度就会变弱,使同样的压力产生较大的塑变。该键合方法可用金丝或铝丝键合。

(3)热超声键合法这是同时利用高温和超声能进行键合的方法,用于金丝键合。三种各种引线键合工艺优缺点比较:

1、引线键合工艺过程

引线键合的工艺过程包括:焊盘和外壳清洁、引线键合机的调整、引线键合、检查。外壳清洁方法现在普遍采用分子清洁方法即等离子清洁或紫外线臭氧清洁。

(1)等离子清洁——该方法采用大功率RF源将气体转变为等离子体,高速气体离子轰击键合区表面,通过与污染物分子结合或使其物理分裂而将污染物溅射除去。所采用的气体一般为O2、Ar、N2、80%Ar+20%O2,或80%O2+20%Ar。另外O2/N2等离子也有应用,它是有效去除环氧树脂的除气材料。

(2)外线臭氧清洁通过发射184.9mm和253.7mm波长的辐射线进行清洁。过程如下:

184.9 nm波长的紫外线能打破O2分子链使之成原子态(O+O),原子态氧又与其它氧分子结合形成臭氧O3。在253.7nm波长紫外线作用下臭氧可以再次分解为原子氧和分子氧。水分子可以被打破形成自由的OH-根。所有这些均可以与碳氢化合物反应以生成CO2+H2O,并最终以气体形式离开键合表面。253.7nm波长紫外线还能够打破碳氢化合物的分子键以加速氧化过程。尽管上述两种方法可以去除焊盘表面的有机物污染,但其有效性强烈取决于特定的污染物。例如,氧等离子清洁不能提高Au厚膜的可焊性,其最好的清洁方法是O2+Ar 等离子或溶液清洗方法。另外某些污染物,如Cl离子和F离子不能用上述方法去除,因为可形成化学束缚。

因此在某些情况还需要采用溶液清洗,如汽相碳氟化合物、去离子水等。

(3)引线键合工艺有球键合工艺和楔键合工艺两种。

球键合一般采用D75μm以下的细Au丝。主要是因为其在高温受压状态下容易变形、抗氧化性能好、成球性好。球键合一般用于焊盘间距大于100μm的情况下。目前也有用于50μm焊盘间距的例子。

(4)在球键合工艺的设计方面,一般应遵循以下原则:

(a)球的初始尺寸为金属丝直径的2-3倍。应用于精细间距时为1.5倍,焊盘较大时为3-4倍;

(b)终成球尺寸不应超过焊盘尺寸的3/4,是金属丝直径的2.5-5倍; (c)环引线高度一般为150μm,取决于金属丝直径及具体应用;

(d)闭环引线长度不应超过金属丝直径的100倍。但在某些多I/O情况下,引线长度可能要超过5mm。键合设备在芯片与引线框架之间牵引金属丝时不允许有垂直方向的下垂和水平方向的摇摆。

楔键合工艺既适用于Au丝,也适用于Al丝。二者的区别在于Al丝采用室温下的超声波键合,而Au丝采用150℃下的热超声键合。楔键合的一个主要优点是适用于精细尺寸,如50um以下的焊盘间距。但由于键合工具的旋转运动,其总体速度低于热超声球键合。最常见的楔键合工艺是Al丝超声波键合,其成本和键合温度较低。而Au丝楔键合的主要优点是键合后不需要密闭封装,由于楔键合形成的焊点小于球键合,特别适用于微波器件。

(5)楔键合工艺的设计方面,一般应遵循以下原则:

(a)使键合点只比金属丝直径大2-3μm也可能获得高强度连接; (b)焊盘长度要大于键合点和尾丝的长度; (c)焊盘的长轴与引线键合路径一致;

(d)焊盘间距的设计应保持金属丝之间距离的一致性。

(6)键合的方式有两种。正焊键合:第一点键合在芯片上,第二点键合在封装外壳上;反焊键合:第一点键合在外壳上,第二点键合在芯片上。采用正焊键合时,芯片上键合点一般有尾丝;采用反焊键合时,芯片上一般是无尾丝的。究竟采用何种

键合方式键合电路,要根据具体情况确定。

2、引线键合的质量检查

严格的镜检可以有效的剔除内引线键合的不合格。分别通过40倍左右和1000倍左右的显微镜观察,可以找到键合位置不当、键合丝损伤、键合丝长尾、键合丝颈部损伤、键合面明显玷污及异常、键合变形过大或过小、金属化表面有擦伤、键合引线与管芯夹角太小、残留的键丝头在管芯上或管壳内等问题。

3、影响引线键合可靠性的因素

在自动引线键合技术中,半导体器件键合点脱落是最常见的失效模式。这种失效模式用常规筛选和测试很难剔除,只有在强烈振动下才可能暴露出来,因此对半导体器件的可靠性危害极大。可能影响内引线键合可靠性的因素主要有:

(1)界面上绝缘层的形成在芯片上键合区光刻胶或窗口钝化膜未去除干净,可形成绝缘层。管壳镀金层质量低劣,会造成表面疏松、发红、鼓泡、起皮等。金属间键合接触时,在有氧、氯、硫、水汽的环境下,金属往往与这些气体反应生成氧化物、硫化物等绝缘夹层,或受氯的腐蚀,导致接触电阻增加,从而使键合可靠性降低。 (2)金属化层缺陷,金属化层缺陷主要有:芯片金属化层过薄,使得键合时无缓冲作用,芯片金属化层出现合金点,在键合处形成缺陷;芯片金属化层粘附不牢,最易掉压点。

(3)表面沾污,原子不能互扩散包括芯片、管壳、劈刀、金丝、镊子、钨针,各个环节均可能造成沾污。外界环境净化度不够,可造成灰尘沾污;人体净化不良,可造成有机物沾污及钠沾污等;芯片、管壳等未及时处理干净,残留镀金液,可造成钾沾污及碳沾污等,这种沾污属于批次性问题,可造成一批管壳报废,或引起键合点腐蚀,造成失效;金丝、管壳存放过久,

不但易沾污,而且易老化,金丝硬度和延展率也会发生变化。

(4)材料间的接触应力不当,键合应力包括热应力、机械应力和超声应力。键合应力过小会造成键合不牢,但键合应力过大同样会影响键合点的机械性能。应力大不仅会造成键合点根部损伤,引起键合点根部断裂失效,而且还会损伤键合点下的芯片材料,甚至出现裂缝。

(5)环境不良超声键合时外界振动、机件振动或管座固定松动,或位于通风口,均可造成键合缺陷。

(6)键合引线与电源金属条之间放电引起失效(静电损伤) 当键合引线与芯片水平面夹角太小时,在ESD(静电放电)应力作用下,键合引线与环绕芯片的电源线(或地线)之间因距离太近易发生电弧放电而造成失效。

联系合同范文客服:xxxxx#qq.com(#替换为@)