盾构穿越高架桩基风险辨识与控制技术

发布时间 : 星期四 文章盾构穿越高架桩基风险辨识与控制技术更新完毕开始阅读

盾构穿越高架桩基风险辨识与控制技术

【摘要】为保证长江西路南线隧道盾构准确穿越高架桩基,对超大直径泥水平衡气压盾构近距离穿越高架桩基施工进行风险辨识和预控,通过对盾构穿越区的地基采用MJS工法进行加固、对高架桩基采取隔离保护措施、盾构在试验段、影响段、穿越中和穿越后4个阶段施工参数的控制,从而盾构成功地完成了穿越高架桩基,并确保了城市轨道交通运行的安全和隧道工程的质量。

1 工程概况

长江西路越江隧道新建工程采用Φ15.43m泥水气压平衡盾构施工,南线隧道盾构从浦东工作井向浦西工作井推进,进洞前首次从预留空间中的逸仙路高架、轨道交通3号线桩基穿越;盾构进洞后转位,由浦西工作井向浦东工作井推进北线隧道,盾构出洞后将再次穿越轨道交通3号线、逸仙路高架桩基。

浦西工作井距轨交3号线桩基约为29.4m,逸仙路高架桩基距轨交3号线桩基约为19.6m;南线盾构与逸仙路高架桩基最小净距约2.285m,北线盾构与轨交3号线桩基承台最小净距为1.055m,穿越处的桩基为PHC管桩和钢筋混凝土方桩,穿越部位与高架在平面上近似垂直相交。穿越段南、北线隧道顶埋深约15.0m,穿越段隧道主要处于④层灰色淤泥质土、⑤1层灰色黏土及⑥层暗绿~草黄色粉质黏土中。

图1为盾构穿越高架桩基工程平面位置图。

1

图1 盾构穿越高架桩基工程平面位置图

2 盾构穿越桩基的施工风险分析

轨交3号线北延伸线是连接宝山地区和市中心的一条重要的轨道交通线,采用高架形式敷设;逸仙路高架是宝钢、吴淞地区连接上海中心城区的快速通道,高架主线为双向4车道的城市快速路。穿越路段地面交通作为上海市重要的物流集散地,车流、人流较大,是该地区重要的货运和客运的交通干道。

长江西路隧道工程盾构穿越既有轨道交通3号线与盾构穿越市区高架路有着极大的相似性,不同的仅是桥梁上部的动荷载,因此,对3号线的控制要求更为严格,其保护等级为一级,要求3号线的两轨道横向高差小于4mm,主体结构的最终绝对沉降(或隆起)量和水平位移量小于10mm,两相邻承台的差异沉降小于等于6.25mm。

2.1 盾构穿越高架可能引起的风险

图2为盾构穿越轨道交通3号线及逸仙路高架施工风险辨识方框图。

2

图2 盾构穿越轨道交通3号线及逸仙路高架施工风险辨识

1)盾构在推进时与轨道交通3号线、逸仙路高架垂直穿越,因此,首先需要考虑上方的桥梁跨径是否满足盾构施工要求,另外盾构在高架桥下推进前,须对桥梁下部结构作详细调查,包括桥台形式和桩的数量、长度、直径、桩位布置形式。如果地质勘测和桥梁下部结构调查不全面,将会影响盾构推进的施工控制。

表1列出来轨交3号线、逸仙路高架的桩基、箱梁、立柱的类型及跨距、净空高度、承台尺寸。

表1 轨交3号线、逸仙路高架桩基参数

3

2)盾构推进引起桩基周围土体扰动主要体现在:

⑴盾构经过高架桩基础时,可能引起地下水含量和紊流运动状态的改变;含砂土颗粒的泥水不断沿初砌管片接缝渗入,引起局部土体坍塌。

⑵盾构机前进所遇到各种阻力,反作用于土体,产生土体附加应力,引起桩基周围土体变形甚至破坏。

⑶当管片脱出盾尾时与周围土体产生的建筑空隙不能及时注浆填补,使上部土体向管片坍落,覆土层出现一些附加的间隙或裂缝,密实度降低;隧道纠偏时,盾构两侧土体应力应变扰动土体的结构及物理力学参数的变化,影响到上部结构的安全。

⑷受盾构推进的影响,盾构机前后、左右、上下各部位的土体以及浆液的固结、次固结沉降都使土体产生向下的位移变形。

3)桩基周围的土体受到扰动,桩基可能会发生一定挠曲,这种挠曲会随着盾构的不断推进而改变方向,桥梁的桩基产生挠曲会改变桩原来的受力特性,会使桩与桩之间产生一定程度的差异沉降,由此会影响到桥梁上部结构。

4)盾构在推进施工过程中会引起高架桩基础附近土体的变形,如果变形程度较大,导致桩基不均匀沉降,则会引起高架桥面起伏不平。在列车的动荷载作用下,铁轨将产生较大的变形,列车振动严重时会造成出轨事故,列车车速越快,危险越高。

5)上部列车动荷载传至下部结构,影响到土体,增大了盾构掘进风险。 6)如果忽视对隧道以及周围地表沉降、高架桥梁上部结构的监测,信息化施工不力,将影响盾构的推进。

4

联系合同范文客服:xxxxx#qq.com(#替换为@)