照相机镜头发展及设计李威 - 图文

发布时间 : 星期二 文章照相机镜头发展及设计李威 - 图文更新完毕开始阅读

哈尔滨理工大学学士学位论文

参考文献

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

陶纯堪.变焦距光学系统设计. 国防工业出版社, 1988: 2~3 袁旭沧. 应用光学. 国防工业出版社, 1988: 291~292

何格平. 变焦镜头的历史及结构. 中国网络摄影, 2003: 23~25 W. J. Smith. Modern optical engineer. Third Edition, 2000: 295~296

刘崇进, 史光辉. 机械补偿法变焦镜头三个发展阶段的概况和发展方向. 应用光学, 1992: 21~26

郑保康. 光学系统设计技巧. 云光技术, 2005, 37(l): 11~12

张存武. 变焦距光学系统设计. 长春理工大学硕士论文, 2006: 2~3 徐金镛. 光学设计. 国防工业出版社, 1989: 252~284

李林, 安连生. 计算机辅助光学设计的理论与应用. 国防工业出版社, 2002: 160~161

郁道银, 谈恒英. 工程光学. 机械工业出版社, 2005: 132~133

胡昊明. 长焦连续变倍单镜头反光照相镜头技术研究. 南京理工大学硕士论文. 2006: 8~9

姚多舜. 连续变焦光学系统设计讲座机械补偿式三组元连续变焦光学系统的设计方法. 应用光学, 2008, 4(2): 7~12

L. Bergstein. General theory of optically compensated varifocal systems. J. Opt. Soc. Am, 1958, 48(3): 154~171

R. J. Pegis, W. G. Peck. First order design theory for linearly compensated zoom systems. J. Opt. Soc. Am, 1962, 52(8): 905~911

M. Hertzberg. Gaussian optics and Gaussian brackets. J. Opt. Soc. Am, 1943, 33(12): 651~655

萧泽新. 工程光学设计. 电子工业出版社, 2008: 157~158

竺庆春, 陈时胜. 矩阵光学导论. 上海科学技术文献出版社, 1991: 24~50

姚多舜. 连续变焦光学系统设计讲座机械补偿式三组元连续变焦光学系统的设计方法2. 应用光学, 2008, 4(2) : 7~12

李世贤, 李林. 光学设计手册. 第1版. 北京理工大学出版社, 1996 李晓彤, 岑兆丰. 几何光学和光学设计. 浙江: 浙江大学出版社, 1997 E. Delano. APPL. OPT, 光学报, 1993, 24 (6): 129~149 K. Tanaka. Spring design, 光学报, 1991, 24 (4): 80~100 K. Tanaka. Spring design, 光学报, 1993, 10 (8): 165~185

Kingslake, Applied Optics and Optical Thin Films, Academics Press, 1985, 36(7): 146~166

- 25 -

哈尔滨理工大学学士学位论文

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Holland, Vacuum Deposition of Thin Fi1ms, London: Chapman Hall, , 19861, 8(12): 245~265

Buralli, A. Dake. Optical design with distractive lenses. Sinclair Optics, design notes, 1991, 40(26): 266~278

T .Yosikawa, Proc.of Japan Display 92,1992, 9(6): 186~219 F. J. Kahn, projector Display, SID, 1996, 18(3): 97-127

R. kefir, Proc. IDRC92(Japan Display 92), 1992, 15(6): 186~216

H. Young, An. Third-order aberration solution using aberration polynomials for a general zoom lens design. Proc of SPIE, 2007, 6667: 66670B~1

I. A Neil. Optimization glitches in zoom lens design. Proc of SPIE, 1997, 3129: 158

A. Cox. Zoom Lens Design. Proc of SPIE, 2001,4487

王之江, 顾培森. 实用光学技术手册. 机械工业出版社, 2006: 380~381 陆水贵, 杨建东. 光学非球而先进制造关键技术的探讨. 长春理工大学学报, 2006, 2(29): 31~ 33

R. Johnson. Very-broad Spectrum Afocal Telescope. SPIE. 1998, 3482: 9 T. H. Jamieson. Ultrawide Waveband Optics. Opt. Eng. 1984, 23 (2):111 ~116

张以漠. 应用光学. 天津大学出版社, 1988: 315327

康重庆, 陈启鑫, 夏清. 低碳电力技术的研究展望. 电网技术,2009, 33(2): 1-7

蔡圣善, 朱耘, 徐建军. 电动力学. 第二版. 高等教育出版社, 2002 叶培大, 吴彝. 光波导技术基本理论. 人民邮电出版社, 1981

- 26 -

哈尔滨理工大学学士学位论文

附录A 英文原文

Chapter 4 Paraxial World

J. M. Geary Introduction to lens design

4.1 Introduction

When you call up a ray trace in ZEMAX via Analysis - Calculations - RayTraceyou obtain surface height and angle data for a single ray selected via Settings. Youwill see two tables of data. The upper table is for the real ray; the lower, for ihEparaxial ray In this chapter we will concentrate an where the numbers in the paraxial table come from, and answer the yuestion: What is a paraxial ray?

In this book, most designs will be preceded by a thin lens pyre-design. This will be done using manual first-order calculations. The basis for such calculationsare the paraxial ray trace equations (PRTE). Real fray tracing is best left to thecomputer, but paraxial ray tracing is relatively easy. Though an approximation, it is nonetheless quite powerful. The EFL, BFL, f-number, magnification, principal plane locations, pupil locations, and image location can all be found using PRTE. Further, the paraxial ray heights and angles found an optical surfaces will also be used to calculate the Seidel aberrations.

4.2 Paraxial Ray Trace Equations

The PARTE are a pair of linear equations:

The first equation bends the ray (and will be derived in Section 4.5). The second equation provides the transfer height at the following optical surface (or plane of interest). Figures 4.1 and 4.2 illustrate the meaning of each equation.

As an example, we trace the ray from an axial object located 25 units from an optical element having n=0.05 (with units of inverse length), and incident on that surface at a height of 5 units (as illustrated in Figure 4.3).

We first use Equation 4.2 to find the incidence angle on the optical surface. Fig. 4.1Ray bending at a powered surface

Fig. 4.2 Ray transfer to next optical surface.

Fig 4.3 Example of PARTE (thin lens). We next use Equation 4.1 to find the amount of bending performed by the element. (Note in this example we have assumed that n=n=1.This is valid if is the power of a thin lens in air.)

Finally, we again employ Equation 4.2 to find the teat image axial location Please note that any ray launched from the object to any height cm the optical element would yield the same image distance, t;. This is illustrated in Figure 4.4

4.3 Gaussian Lens Formula

- 27 -

哈尔滨理工大学学士学位论文

We will now derive a formula which relates the object and image conjugates. This is a basic formula learned in high school physics.

Fig. 4.4All paraxial rays yield the name emerge distance

Fig. 4.5 Real triplet

Fig. 4.6 PRTE triplet. This is the Gaussian formula for a thin lens derived via the PRTE. Note that / in Figure 4.4 is (according to the convention in Figure 3.1) negative.

4.4 What Lenses Look Like in the PRTE World

Figure 4.5 shows a lens system known as a Cooke triplet. You will design one of these lenses later on. However, in the PRTE world the triplet has the look shown

Fig. 4.7 Rear ray trace at art optical surface: a. significant y height; b. paraxial y height. in Figure 4.6 All dimensions are the same. This include thicknesses, and axial separations. The curved surfaces are replace with flat surface but these surfaces have power. They can bend surface is given by: s lens diameters, axial are replaced with flat rays. The power of a surface is given by

where n' is the index to the right of the surface, n is the index to the left, C is the curvature (11R).

All the first order properties; of a real lens system can be determined using the surrogate paraxial system and the PRTE.

4.5 Determination of Surface Power

Consider the optical refractive surface in Figure 4.7a. We show a ray hitting the surface at a height y and bending. At the ray-surface intersection point, we also show the normal to the surface, and a dashed line parallel to the optical axis. Ray angles (U and U')and incident and refracted angles (and) are also shown. Now imagine sliding the intersection point downward so it is close to the optical axis. If we blow up the scale, we get the picture shown in Figure 4.7b. Using this latter picture and some math we can come up with Equation 4.4.

We start by obtaining an expression for a. From Figure 4.7b we see that:

Next we relate the incident and refracted angles to alpha and the ray angles:

Next we write an expression for Snell's Law for small angles:

Now substitute Equations 4.6 into Equation 4.7 and rearrange: - 28 -

联系合同范文客服:xxxxx#qq.com(#替换为@)