生化习题及大纲

发布时间 : 星期一 文章生化习题及大纲更新完毕开始阅读

蛋白激酶的活性。蛋白激酶的激活如何引起糖元降解的加强?又如何影响糖元的合成?

6.许多糖尿病人对胰岛素不作出应答,因为他们的细胞缺乏胰岛素受体。这将怎样影响①进食后即刻循环的葡萄糖的水平和②肌肉细胞中糖原合成的速度?

7.由丙酮酸经糖异生途径转变成葡萄糖的总反应可示如下:

2丙酮酸 + 4ATP + 2GTP + NADH + 2H+ + 4H2O →

葡萄糖 + 2 NAD+ + 4ADP +2GDP + 6Pi

-1

△G0'=﹣37.6 kJ·mol

但是,葡萄糖经酵解转变成丙酮酸只净产生2分子的ATP。因此,由丙酮酸合成葡萄糖是一种代价很高的过程。

①这种高昂代价的生理意义是什么? ②能量的消耗主要用在什么场合?

8.柠檬酸循环什么样的重要产物是由丙酮酸合成葡萄糖所需要的? 9.在进行紧张的运动时,肌糖元降解成丙酮酸,丙酮酸然后被还原为乳酸。在恢复时,乳酸被转移到肝脏,在那里它被氧化成丙酮酸,然后丙酮酸用来合成葡萄糖。丙酮酸的还原和乳酸的氧化都是由同一种酶乳酸脱氢酶催化。请解释为什么代谢物在该酶催化下的流动方向却是相反的?

10.多肽激素胰高血糖素的释放是由于胰脏对低血糖水平作出应答所致。在肝

脏细胞中,胰高血糖素在调节糖酵解和糖异生两个相反途径的活性中起着主要的作用。这种调节作用是通过影响果糖-2,6-二磷酸的浓度实现的。如果胰高血糖素引起果糖-2,6-二磷酸的浓度的降低,将如何导致血糖水平的增高? 习题解答:

1.解答:这种病人缺乏糖原分支酶。正常人的糖原样品被降解时,葡萄糖-1-磷酸与葡萄糖的比例大约是10︰1。葡萄糖-1-磷酸与葡萄糖的高比例表明该病人含有由α(1→4)糖苷键连结的长糖链和很少的由α(1→6)糖苷键连结的分支点。

2.解答:肌肉糖原磷酸化酶的缺乏阻止了糖原转变成葡萄糖。葡萄糖的不足阻止ATP经由糖酵解产生。现存ATP用于肌肉收缩而得不到补充,从而导致ADP和Pi的增加。由于肌肉组织的糖原不能提供可用的葡萄糖,因此没有乳酸的产生。

3.解答:当这1分子的葡萄糖经过糖原的合成和降解,最终净产生得到ATP分子数是31,损失了1分子的ATP,损失份额约为3%。这损失的部分用在了UDP-葡萄糖焦磷酸化酶催化的反应中。

4.解答:①葡萄糖-6-磷酸酶活性(葡萄糖-6-磷酸→葡萄糖+Pi)的缺乏导致细胞内葡萄糖-6-磷酸的积累。葡萄糖-6-磷酸能抑制糖原磷酸化酶的活性并激活糖原合酶的活性,这将阻止肝脏糖原的代谢,其结果是糖原储存增加和肝脏肿大并且血糖水平降低(低血糖症)。②脱支酶的缺乏将导致外层短分支的糖原分子增多。这些分子不能被降解,因此将只有非常少量的糖原降解形成葡萄糖,进而导致血糖水平降低。 5.解答: 这两种激素都能与靶细胞膜上的专一性受体结合,通过G蛋白的介导激活腺苷酸环化酶,导致cAMP水平升高。cAMP使蛋白激酶激活,后者催化磷酸基从ATP转移到磷酸化酶激酶的丝氨酸残基上。被激活的磷酸化酶激酶催化磷酸基从ATP转移到糖元磷酸化酶。糖元磷酸化酶的磷酸化,便使该酶从低活性b形式转变成高活性的a形式。净结果是糖元降解速度增高。

蛋白激酶也能催化糖元合酶的磷酸化(磷酸基从ATP转移至合成酶的丝氨酸残基上)。这种磷酸化使糖元合酶从有活性的a形式转变成低活性的b形式。其净结果是糖元合成的速度降低。从这里我们可以看出,磷酸化作用对糖元磷酸化酶和糖元合酶的活性有相反的影响。

6.解答:①由于细胞缺乏胰岛素受体,不能从循环着的血液中吸收葡萄糖,因而循环着的葡萄糖的水平升高。②胰岛素不能激活肌肉磷蛋白磷酸酶-1的活性,因此糖原的合成不会受到刺激,而且由于细胞缺乏可用的葡萄糖,从而造成糖原的合成极大地减少。

7.解答:①这种高昂代价的生理意义是将能量上不利的反应(糖酵解的逆反应,△

--

G0'=+ 83.6kJ·mol1)转变成能量上有利的反应(糖异生△G0'=﹣37.6 kJ·mol1),从而升高血糖的浓度,或将细胞内生糖物质前体转变成葡萄糖,以糖元的形式贮存起来,达到维持生

理平衡和正常运转的目的。

②在由丙酮酸转变成葡萄糖的糖异生过程中,丙酮酸不能在丙酮酸激酶的催化下转变成磷酸烯醇式丙酮酸(PEP),因为该反应在能量上是不可逆的。丙酮酸经过丙酮酸羧化酶以及磷酸烯醇式丙酮酸羧激酶的催化,经过一个迂回过程转变成磷酸烯醇式丙酮酸:

-1

丙酮酸+CO2+ATP+H2O → 草酰乙酸+ADP+Pi △G0'=﹣2.09 kJ·mol 草酰乙酸+GTP → 磷酸烯醇式丙酮酸+CO2+GDP △G0'=﹢2.93 kJ·mol 丙酮酸+ATP+GTP+H2O → 磷酸烯醇式丙酮酸+ADP+GDP+Pi

-1

△G0'=﹢0.64 kJ·mol

这一迂回反应在热力学上是可行的,因为丙酮酸激酶催化的逆反应需要输入31.35 kJ·mol-1自由能。ATP和GTP降解产生的能量输入到了磷酸烯醇式丙酮酸分子中。若以2分子的丙酮酸计,至此已经消耗了2分子ATP和2分子的GTP。

此外,3-磷酸甘油酸转变成1,3-二磷酸甘油酸需要消耗1分子的ATP。这一反应是由磷酸甘油酸激酶催化的。若以2分子的丙酮酸计的话,这里又消耗了2分于的ATP。至此,总共消耗了4分子的ATP和2分子的GTP。

8.解答:由丙酮酸形成葡萄糖需要还原力NADH、以及ATP和GTP。NADH和GTP直接由柠檬酸循环产生,而ATP则可由该循环产生的NADH和FADH2在氧化磷酸化发生时提供。

9.解答:乳酸脱氢酶催化的反应是:

丙酮酸 + NADH + H+ ←→ 乳酸 + NAD+

在上面的反应中,除了丙酮酸和乳酸外,还有三种其他成员存在,即NADH、H+和NAD+。代谢物流动方向由△G决定,即由所有参加者的各自的浓度决定:

△G=△G0'+2.303RTlog([乳酸][ NAD+]/[丙酮酸][ NADH][ H+])

在紧长活动时,肌肉NADH的浓度高,并且环境是酸性的(因为[H+]也高),这就使得△G比较负,代谢物的流动按丙酮酸还原的方向进行。在恢复时,氧是充足的,肝脏中的NAD+浓度高,并且环境是低酸性的。这些条件有利于肝脏的糖异生作用,降低丙酮酸的浓度。这些浓度的变化使得△G比较正,代谢物的流动是以乳酸氧化的方向进行。

10.解答:果糖-2,6-二磷酸水平的降低导致糖酵解速度降低和糖异生作用的速度的升高。果糖-2,6-二磷酸是糖酵解的磷酸果糖激酶-1的激活剂,降低果糖-2,6-二磷酸的水平将导致糖酵解速度的降低;同时也是糖异生酶果糖-1,6-二磷酸酶的抑制剂。因此,降低果糖-2,6-二磷酸的水平将有利于糖异生作用,增加葡萄糖的合成,从而升高血糖的浓度。 习题:

1.脂肪酸是高度不溶的,对红细胞有毒害作用(裂解红细胞)。脂肪组织中的脂肪经脂肪酶水解产生的脂肪酸经环流的血液运送到靶细胞被氧化利用。 ①当贮存在脂肪组织中的脂肪动用时,其信号是什么? ②该脂肪酶是激素敏感酶吗?

③脂肪酸以什么形式转运到靶细胞?

2.虽然脂肪酸氧化的功能是为ATP的生成提供还原当量,但是,肝脏却不能氧化脂肪酸,除非有ATP存在。为什么?

3.请解释为什么缺乏肉碱-软脂酰转移酶Ⅱ的个体会感到肌肉无力。为什么当饥饿时这种症状更严重?患这种病的个体影响肌糖原的有氧代谢吗?

4.软脂酸完全氧化成CO2和H2O可由下面的总反应表示:

软脂酸 + 23O2 + 129ADP + 29Pi → 16CO2 + 145H2O + 129ATP.

这145分子的H2O是怎样产生的?

5.用14C标记第9位碳的软脂酸在柠檬酸循环正在进行的条件下氧化。14C将出现在乙酰CoA、柠檬酸、丁酰CoA的什么部位?(回答问题时只考虑柠檬酸循环一次。)

6..把甲基碳标记的丙酸加入到肝脏匀浆中,很快产生14C标记的草酰乙酸。请叙述丙酸转变成14C标记的草酰乙酸的过程,并指出14C在草酰乙酸中的位置。

7.柠檬酸转运系统为胞液软脂酸的合成提供乙酰CoA,这一转运系统能为软脂酸的合成提供多少百分比的NADPH?

8.用羧基被14C标记的软脂酸喂养动物,①在生酮状态下, 14C标记将出现在乙酰乙酸的什么部位?②在膜脂合成的条件下,14C标记将出现在二氢鞘氨醇的什么部位?

-1

9.业已提出,丙二酸单酰CoA可能是向大脑发送减少胃口效应的一种信号。当喂给老鼠一种浅蓝菌素(cerulenin)的衍生物(称为C75)时,它们的胃口受到抑制,并且迅速失重。已知浅蓝菌素及其衍生物是脂肪酸合酶的有效抑制剂。为什么C75可作为一种潜在的减肥药物。

10.脂肪酸可由乙酰CoA和丙二酸单酰CoA装配成。在纯化的脂肪酸合酶催化的反应

14

中,如果,用C标记乙酰CoA的两个碳原子,并加入过量的丙二酸单酰CoA。结果所合成的软脂酸只有两个碳原子被标记。这两个被标记的碳原子是C-1和C-2还是C-15和C-16?为什么?

11.脂肪酸生物合成的限速步骤是由乙酰CoA羧化酶催化的乙酰COA的羧化反应。只有当乙酰GoA的供应很充足时,该酶的活性才会很高。乙酰CoA的充足供应怎样激活这个酶呢?

12.CO2在脂肪酸的生物合成中是一种必不可少的参加者。CO2的特殊作用是什么?如

14

果把可溶性的肝细胞抽提液与CO2以及脂肪酸合成中所需要的其他组分一起保温,所合成

14

的软脂酸含有C标记吗?为什么?

13.对于软脂酸的生物合成,必须有胞液NADPH的来源。大约一半的NADPH来自胞液中磷酸己糖支路,其余者主要来自(肝脏或脂肪组织)胞液苹果酸酶的作用。苹果酸酶催化下面的反应:

苹果酸 + NADP+ → 丙酮酸 + CO2 + NADPH + H+

应用该反应和柠檬酸-丙酮酸穿梭证明糖酵解产生的NADH推动脂酸的生物合成。

14.幼年大鼠饲养在缺乏甲硫氨酸的食物中不能健康成长,除非在食物中添加胆碱。为什么?

15. 为什么人及实验动物缺乏胆碱会诱发脂肪肝? 习题解答:

1.解答:①脂肪细胞内的cAMP的水平升高。

②该脂肪酶是一种激素敏感酶。当肾上腺素、胰高血糖素、促肾上腺皮质激素以及β、α-促脂解激素达到靶细胞(脂肪细胞)的膜表面时,激活腺苷酸环化酶,使ATP转变成环腺苷酸(cAMP),从而导致细胞内cAMP水平升高而激活蛋白激酶。脂肪酶被蛋白激酶磷酸化而激活,使脂肪水解产生脂肪酸。 ③血浆白蛋白是游离脂肪酸的载体。血浆白蛋白是一种很重要的蛋白质,是高溶解性蛋白,分子量约为69 000,由单一肽链组成。该蛋白约占血浆蛋白质的50%。血浆白蛋白与脂肪酸结合成脂蛋白形式。经血液到达各组织后通过扩散使脂肪酸进入细胞而被利用。此外,脂肪酸与白蛋白结合成脂蛋白后可以阻止它形成脂肪酸盐而沉淀下来。

2.解答:脂肪酸要想进入到β-氧化途径。它们首先必须被活化转变成脂酰CoA。这个过程需要输入ATP。

3.解答:肉碱-软脂酰转移酶Ⅱ的缺乏阻止了被活化的脂肪酸正常转运到线粒体内用于β-氧化,用脂肪酸作代谢燃料的肌肉组织因此而不能产生所需的ATP。由于饥饿时没有可用的食物性葡萄糖的提供,因而肌肉无力的症状会更严重。由于糖酵解产生的丙酮酸转运进入线粒体不需要肉碱-软脂酰转移酶Ⅱ,因此,缺乏肉碱-软脂酰转移酶Ⅱ的个体的肌糖原的的代谢不受其影响。

4.解答:一部分H2O分子来自电子传递链中氧的还原反应:

C16H32O2 + 23O2 → 16CO2 + 16H2O,

另一部分是ATP的酸酐键形成时释放出来的(注:产生的ATP数按习惯方式计算): 129ADP + 129Pi → 129ATP + 129H2O.

5.解答:软脂酸经过4次β-氧化后,余下的八碳酸的羧基碳含有放射性标记,再经一次β

氧化产生的乙酰-CoA的羧基碳含有标记。含有标记的乙酰-CoA进入柠檬酸循环,使柠檬酸的乙酰基进入部位的羧基含有放射性标记。软脂酸后续继续降解产生的丁酰-CoA没有14C标记。

6.解答:甲基碳标记的丙酸加入到肝脏匀浆后经三种酶(丙酰CoA羧化酶、甲基丙

二酸单酰CoA消旋酶和甲基丙二酸单酰CoA变位酶)催化下转变成琥珀酰CoA。此时琥珀酰CoA的靠近羧基端的次甲基含有14C标记。次甲基含有14C标记的琥珀酰CoA进入柠檬酸循环,产生的草酰乙酸的中间两个碳含有14C标记,但这两个碳分别只占原初标记的50%。

7.解答:软脂酸的合成需要14分子的NADPH。经柠檬酸转运系统从线粒体转运8分子的乙酰CoA到胞液中,可提供8分子的NADPH,它占所需NADPH的57%。

8.解答:①在生酮状态下, 14C标记将出现在乙酰乙酸的两个羰基碳上;②在膜脂合成的条件下,14C标记将出现在二氢鞘氨醇的含羟基的碳上。

9.解答:进食刺激乙酰CoA从糖代谢(糖酵解、丙酮酸氧化)和脂代谢(脂肪酸的氧化)产生。在正常情况下,增高乙酰CoA的浓度导致丙二酸单酰CoA水平的升高(通过乙酰CoA羧化酶反应)。高水平的丙二酸单酰CoA可以起到抑制胃口的作用。C75通过对脂肪酸合酶的抑制,阻止丙二酸单酰CoA用于脂肪酸合成而被移走,从而进一步升高了丙二酸单酰CoA的水平,也进一步降低了胃口。

10.解答:在软脂酸的生物合成中,只需要一分子的乙酰CoA作为“引物”,软脂酸碳链的延长是以每两个碳原子为单位连续地加到羰基末端,每个二碳单位都是来自丙二酸单

14

酰CoA。因此,软脂酸甲基端的两个碳即C-15和C-16含有C标记。

11.解答:当乙酰CoA的供应量很高时,丙酮酸羧化酶被激活,从而可使线粒体内的草酸乙酸的水平升高。于是就增高了柠檬酸循环的活性,随之亦增高了线粒体内的柠檬酸的水平。线粒体内的柠檬酸经特殊的载体转运而进入到胞液中,于是胞液柠檬酸水平亦随之升高。由于柠檬酸是乙酰CoA羧化酶的正调节效应物,因此柠檬酸水平的升高必然会导致脂酸合成速度升高。

12.解答:CO2作为乙酰CoA羧化酶的底物之一参与乙酰CoA的羧化反应。乙酰CoA羧化生成的丙二酸单酰CoA作为二碳单位的供体参与脂肪酸的合成反应。然而合成的软脂酸却不含14C标记。其原因是当丙二酸单酰CoA与乙酰CoA结合到脂肪酸合酶的酰基载体蛋白上时,便发生缩合反应,在缩合反应中,来自14CO2的游离羧基就从丙二酸单酰基上释放出来(见图14-5)。因此,把CO2加到乙酰CoA上起到了在缩合之前激活乙酰CoA的作用。这可以从激活作用只在以ATP水解为代价的前提下才发生来证实。由于CO2在缩合反应中释放出来,所以在所合成的软脂酸分子中不含14C标记(图14-5)。

13.解答: 图14-6给出了对问题的回答

联系合同范文客服:xxxxx#qq.com(#替换为@)