数值分析习题集及答案

发布时间 : 星期日 文章数值分析习题集及答案更新完毕开始阅读

1?(k)(k?1)x?(b?ax);11122?a11???x(k)?1(b?ax(k?1));22211?a22? (k?1,2,?).

(k){x}收敛的充要条件是 求证: 由上述迭代公式产生的向量序列

r?a12a21a11a22?1.5. 设方程组

?x1?0.4x2?0.4x3?1?x1?2x2?2x3?1???0.4x1?x2?0.8x3?2?x1?x2?x3?1?0.4x?0.8x?x?3?2x?2x?x?112323?(a) (b) ?1

试考察解此方程组的雅可比迭代法及高斯-塞德尔迭代法的收敛性。

6. 求证k??limAk?A的充要条件是对任何向量x,都有

limAkx?Ax.k??

7. 设Ax?b,其中A对称正定,问解此方程组的雅可比迭代法是否一定收敛?试考察习题5(a)方程组。 8. 设方程组

111?x?x?x?;?143442??x?1x?1x?1;?243442???1x?1x?x?1;123?442?111??x1?x2?x4?.42 ?4(a) 求解此方程组的雅可比迭代法的迭代矩阵B0的谱半径;

(b) 求解此方程组的高斯-塞德尔迭代法的迭代矩阵的谱半径;

(c) 考察解此方程组的雅可比迭代法及高斯-塞德尔迭代法的收敛性。 9. 用SOR方法解方程组(分别取松弛因子??1.03,??1,??1.1)

?4x1?x2?1;???x1?4x2?x3?4;??x?4x??3.23?

精确解

数。

10. 用SOR方法解方程组(取?=0.9)

x?(?12,1,?12),T要求当||x?x?(k)||??5?10?6时迭代终止,并且对每一个?值确定迭代次

?5x1?2x2?x3??12;???x1?4x2?2x3?20;?2x?3x?10x?3.23?1

要求当||x(k?1)?x(k)||??10?4时迭代终止。

?x(k)11. 设有方程组Ax?b,其中A为对称正定阵,迭代公式

x(k?1)??(b?Ax(k)), (k?0,1,2,?)

0???2试证明当

?时上述迭代法收敛(其中0????(A)??)。

(k?1)12. 用高斯-塞德尔方法解Ax?b,用xi记x(k?1)的第i个分量,且

i?1nijri(k?1)i(k)i(k?1)?bi??aj?1x(k?1)j??aijxij?i(k)。

x?x(k)??ri(k?1)(a) 证明 (b) 如果?(k)ai;

?(k?1)?x?x,其中x是方程组的精确解,求证:

?i?1(k?1)i??(k)i?riaii(k) 。

(k)nri(k?1)?其中 (c) 设A是对称的,二次型

?j?1aij?(k?1)j??aij?ij?iQ(?(k))?(A?n(k),?)

2Q(?(k?1))?Q(?(k)证明

)???j?1(rj(k?1))ajj。

(0)(d) 由此推出,如果A是具有正对角元素的非奇异矩阵,且高斯-塞德尔方法对任意初始向量x敛的,则A是正定阵。

13. 设A与B为n阶矩阵,A为非奇异,考虑解方程组

Az1?Bz2?b1,Bz1?Az2?b2,

是收

其中z1,z2,d1,d2?R。

(a) 找出下列迭代方法收敛的充要条件

Az1Az1(m?1)n?b1?Bz2,Az2?b1?Bz2,Az2(m)(m)(m?1)?b2?Bz1?b2?Bz1(m)(b) 找出下列迭代方法收敛的充要条件

(m?1)(m?1)(m?0); (m?0);

(m?1)比较两个方法的收敛速度。 14. 证明矩阵

?1?A?a???aa1a12a??a?1??

12是收敛的。

对于

?12?a?1是正定的,而雅可比迭代只对2020??a??5?0?A??3??015. 设

12?133??4??1??7?,试说明A为可约矩阵。

(k?1)16. 给定迭代过程,x?Cx(k)?g,其中C?Rn?n(k?0,1,2,?),试证明:如果C的特征值

?i(C)?0(i?1,2,?),则迭代过程最多迭代n次收敛于方程组的解。

17. 画出SOR迭代法的框图。

18. 设A为不可约弱对角优势阵且0???1,求证:解Ax?b的SOR方法收敛。 19. 设Ax?b,其中A为非奇异阵。 (a) 求证AA为对称正定阵;

(b) 求证cond(AA)2?(cond(A)2)。

T2T第九章 矩阵的特征值与特征向量计算

1. 用幂法计算下列矩阵的主特征值及对应的特征向量:

?7?A1?3????234?2???1?3???3?A2??4???3?4633??3?1???1(a) , (b) 当特征值有3位小数稳定时迭代终止。 2. 方阵T分块形式为

,

?T11?T?????T12T22???T1n??T2n???Tnn?,

其中Tii(i?1,2,?,n)为方阵,T称为块上三角阵,如果对角块的阶数至多不超过2,则称T 为准三角形形式,用?(T)记矩阵T的特征值集合,证明

n?(T)???(Ti?1ii).3. 利用反幂法求矩阵

?6?2???12311??1?1??

的最接近于6的特征值及对应的特征向量。

4. 求矩阵

?4?0???00310??1?3??

与特征值4对应的特征向量。

5. 用雅可比方法计算

?1.0?A?1.0???0.51.01.00.25

的全部特征值及特征向量,用此计算结果给出例3的关于p的最优值。

6. (a)设A是对称矩阵,λ和x(||x||2?1)是A的一个特征值及相应的特征向量,又设P为一个正交阵,使

Px?e1?(1,0,?,0)

T0.5??0.25?2.0??证明B?PAP的第一行和第一列除了λ外其余元素均为零。

(b)对于矩阵

?2?A?10???2TT105?82???8?11??,

?212?x??,,??333?是相应于9的特征向量,试求一初等反射阵P,使Px?e1,并计算λ=9是其特征值,

B?PAP。

7. 利用初等反射阵将

T?1?A?3???43124??2?1??正交相似约化为对称三对角阵。 8. 设A?Rn?n

,且

Tai1,aj1不全为零,

PijPA为使aj1?0的平面旋转阵,试推导计算ij第i行,第j行元

(2)素公式及APij第i列,第j列元素的计算公式。

9. 设An?1是由豪斯荷尔德方法得到的矩阵,又设y是An?1的一个特征向量。 (a)证明矩阵A对应的特征向量是x?P1P2?Pn?2y; (b)对于给出的y应如何计算x? 10. 用带位移的QR方法计算

?1?A?2???02?10??1?3???3?B?1???0120??1?1??11(a) , (b)

全部特征值。

11. 试用初等反射阵A分解为QR,其中Q为正交阵,R为上三角阵,

?1?A?2???21?1?41???1?5??。

数值分析习题简答

(适合课程《数值方法A》和《数值方法B》)

第一章 绪论习题参考答案

?(x)1. ε(lnx)≈

?r(x)?n*xn*??r(x)??*。

?nx*n?1?(x)x*n?(x)n*2.

*x*?n?(x)x**?0.02n。

***3. x1有5位有效数字,x2有2位有效数字,x3有4位有效数字,x4有5位有效数字,x5有

*2位有效数字。

4. ?(x1?x2?x4)??(x1)??(x2)??(x4)?0.5?10*****************?4?0.5?10?3?0.5?10?3?1.05?10?3?(x1x2x3)?x2x3?(x1)?x1x3?(x2)?x1x2?(x3)?0.214790825?(x2x4**)?*1x4*?(x)?3V4?*2x2x4**2?(x4)?8.855668?10136?V2*?6。

?(V)/123?r(R)??r(3)?133V4??1?(V)3V?13?r(V)?0.0033335. 6.

?(Y100)?100?100?12?10?3??10?3。

联系合同范文客服:xxxxx#qq.com(#替换为@)