材料表面与界面复习题

发布时间 : 星期五 文章材料表面与界面复习题更新完毕开始阅读

(1)书P86-89

(2)①用接枝、嵌段共聚物作增容剂②在共混组分之间引入特殊相互作用③加入低分子量化合物作增容剂④其它

5.对聚合物进行表面处理的目的是什么?聚烯烃薄膜经电晕处理后表面性能可能发生怎样的变化?

(1)①改变表面化学组成,增加表面能②改善结晶形态和表面的几何性质③清除杂质或脆弱的边界层。 (2)经过电晕处理后,聚合物表面可形成各种的极性基团,改善聚合物的粘接性和润湿性,对油墨的附着力显著改善,表面张力、剥离力明显提高。

6.低温等离子处理对聚合物的表面改性能产生哪些效果?

(1)表面交联:等离子体中高能粒子轰击聚合物表面,产生了大量的自由基,自由基间的相互作用,在表面形成致密的交联结构,同时也形成了大量的不饱和键。(2)极性基团的引入 :等离子体表面氧化反应为自由基链反应,氧的介入,可以引入大量的含氧基团,如羧基、羰基、羟基。(3)对润湿性的影响 改善表面的润湿性,使聚合物表面张力增大,接触角变小。(4)对粘接性的影响 极性基团的引入使其与其它的材料的粘结强度大大增强。(5)其它作用 引起聚合物失重、表面形成小坑。裂解产物中分子量较大的降解聚合物,与未降解的相比,分子量较低,其玻璃化温度和粘度较低,因此可以通过界面的流动性和相互的扩散改善可粘结性。

7.聚合物表面接枝有哪些方法?其原理各是什么? (1)表面接枝聚合 大分子偶合 添加接枝共聚物

(2)表面接枝聚合:在光、辐射线、紫外线、等离子体使聚合物表面产生活性种,引发乙烯基单体自由基聚合,进行表面接枝。

大分子偶合: 聚合物表面产生反应性活性基团,使之与带有反应基团的大分子反应偶合,实现其表面接枝。

添加接枝共聚物 在欲改性的高聚物中添加有界面活化性能的共聚物成型,共聚物亲基材段嵌入到基材内部,留下接枝段在基质聚合物的表面上,达到表面改性的目的。

第四章

1.简述无机固体的理想表面、清洁表面和真实表面。

理想表面是将一块晶体沿某晶面切开,而不改变切开面附近原子的位置和电子的密度分开,所形成的表面称为“理想表面”,理想表面在自然界是不存在的。假设除了确定一套边界条件外,系统不发生任何变化,即半无限晶体中的原子位置和电子密度都和原来的无限晶体一样,这种理想的表面实际上不可能存在。

清洁表面是指表面经过特殊处理后,保持在10-9~10-10 超高真空下的状态。特殊处理的方法很多,有离子轰击和退火热处理,解理,热蚀,外延,场效应蒸发等,其中离子轰击加退火热处理是目前最普遍采用的方法。

实际表面是指经过研磨,抛光处理后的状态。在电子显微镜下观察,其表面都是相当不平整的,表面除出现明显的起伏,还可能伴有裂纹和空洞。表面的不平整性,对光刻,细微加工,磁记录,电位器噪声都有很大的影响,而且与材料的润湿,摩擦,抗蚀等也密切相关。

2.叙述固体表面的弛豫现象、表面弛豫与无极超细粉体性能之间的关系。

弛豫是指表面区原子或离子间的距离偏离体内的晶格常数,但晶胞结构基本不变。离子晶体的主要作用力是库仑静电力,是一种长程作用,因此表面容易发生弛豫,弛豫的结果产生表面电矩。例如NaCl 晶体的弛豫,在表面处离子排列发生中断,体积大的负离子间的排斥作用,使Cl-向外移动,体积小的Na+则被拉向内部,同时负离子易被极化,屏蔽正离子电场外露外移,结果原处于同一层Na+和Cl-分成相距为0.026nm的两个亚层,但晶胞结构基本没有变化,形成了弛豫。弛豫主要发生在垂直表面方向,又称为纵向弛豫,弛豫时的晶格常数变化将取决于材料的特征和晶向。弛豫不仅于表面一层,而且会延伸到一定范围,例如NaCl(100)面的离子极化是发生在距表面5 层的范围。许多金属氧化物的表面都容易发生弛豫,并使表面带负电,产生表面电矩。

当金属氧化物以粉体形式存在时,颗粒尺寸为亚微米极超细粉,则表面非常大,弛豫产生的表面电矩使粉体难以紧密接触,给成型工艺带来困难。对于大多数粉体来说,表面原子都有不同程度的弛豫,V 族元素原子向外移动,Ⅲ族元素原子向内移动,弛豫使键能发生旋转,并对表面态产生影响。

3.何谓多晶的晶界?晶界的结构特征如何?

(1)晶界是晶粒之间界面的简称,亦称晶粒间界,是固体材料界面的一种特殊情况。由于实际应用的材料多数为多晶体,境界问题对于材料研究便具有了极大的普遍性。就其本意而言,晶界是同材质同结构不同取向的晶粒之间的界面,这就使得其处理比相界面大大简化。在这种简化处理得到的模型的基础上,再推广到一般的相界上,就容易多了。而实际的晶界远比上述设想复杂。材料本身经常就是多相的,而且在晶界上还会有各种杂质相析出,这就使得晶界不再是同种材料之间的界面,而成为多相界面。

(2)有二种不同的分类方法,一种简单地按两个晶粒之间夹角的大小来分类。分成小角度晶界和大角度晶界。小角度晶界是相邻两个晶粒的原子排列铝合的角度很小,约2`~3`。两个晶粒间晶界由完全配合部分与失配部分组成。界面处质点排列着一系列棱位。当一颗晶粒绕垂直晶粒界面的轴旋转微小角度,也能形成由螺旋位错构成的扭转小角度晶界。大角度晶界在多晶体中占多数,这时晶界上质点的排列已接近无序状态。另一种分类是根据晶界两边原子排列的连贯性来划分的。当界面两侧的晶体具有非常相似的结构和类似的取向,越过界面原子面是连续的。这样的界面称为共格晶界。

4.影响晶界电荷的因素有哪些? 书P122-123

5.讨论晶界应力与材料的物理性能的关系。 书P120-122

6.何谓晶界偏析?举例说明晶界偏析对PTC陶瓷性能的影响。

(1)晶界附近的组分与晶粒内部不同。产生的原因:第一是晶粒内部总是存在或多或少的杂质离予, 但是环绕杂质的弹性应变场较强,而晶界区由于开放结构及弱弹性应变场,因此在适当的高温下下杂质将从晶粒内向晶界扩散而导效偏析以降低应变能。第二是晶界上电荷随温度下降而增加, 因此在降温过程中也会引起杂质的偏析。例如MgO 饱和的A1203 中, 晶界电荷符号为正,引起化合价比Al3+低的Mg2+的偏析,以降低静电势。第三是固溶界限, 当温度降低时,溶质在晶格中的固溶度降低, 偏析量也随之增加,一般氧化物固溶体中的固溶热(固溶时所需能量)都较大, 固溶界限就较低, 易引起溶质偏析。

(2)BaTiO3 陶瓷是否具有PTC 效应,完全是由其晶粒和晶界的电性能决定,没有晶界的单晶是不具有PTC 效应。晶粒和晶界都充分半导化及晶粒半导化而晶界或边界层充分绝缘化的BaTiO3 陶瓷都不具有PTC 效应,而只有晶粒充分半导化,晶界适当绝缘化的BaTiO3 陶瓷才具有显著的PTC 效应。一般是通过掺杂制备PTC 陶瓷,Mn 对PTC 效应的影响最为显著。Mn 离子提高PTC 效应是在晶界层的偏析。对Mn,Nb 共掺杂的BaTiO3 陶瓷进行观察,发现Mn 在晶界处的偏析行为。

7.试叙述表面组成与实际组成(内部)组成差异的原因。

玻璃表面的化学组成与玻璃主体的化学组成有一定的差异,即沿着玻璃表面的垂直方向的个组成含量不是恒值,也就是说组成随深度变化而变化。

造成玻璃表面与主体组成上的差异,主要有熔制、成形、热加工以及玻璃表面受大气、水和其他溶液侵蚀等不同原因造成的。在熔制、成形和热加工过程中,由于高温时一些组成的挥发,或各组分对表面能的贡献大小不同,而造成表面中某些成分的富集,某些成分的减少。当玻璃处在粘滞状态下,使表面能减少的组分,就会富集到玻璃表面,以使玻璃表面能尽可能低;相反,赋予表面能高的组分,就会迁离玻璃表面内部移动,所以这些组分在表面比较少。常用的玻璃成分中的Na+、B3+是容易挥发的。Lyon 认为Na+在成形温度范围内,Na+自表面向周围介质挥发的速度大于Na+从玻璃内部向表面迁移的速度。故用拉制法或吹制法成形玻璃的表面还是少碱的。他认为只有在退火温度下,Na+从内部迁移到表面的速度大于Na+从表面挥发的速度。但实际生产中,退火时对迁移到表面的高Na+层与炉气中的SO2 结合生成Na2SO4 白霜。而这层白霜和容易洗去,结果表面层还是少碱。

8.试叙述玻璃表面结构与玻璃力学性质的关系。

玻璃的实际强度要比理论强度低几个数量级,这是因为实际玻璃存在着微观和宏观缺陷,特别是表面微裂纹,使实际强度大大降低。

Weyl 的玻璃亚表面理论解释了玻璃理论强度大大小于实际强度。假设了玻璃表面亚表面层厚度为胶体粒子大小,不完全对称,配位不全,有缺陷。特点为:几何表面熵值最高,向内部成梯度降低;原子或质点表面不对称,缺陷多,空隙大,成为微多孔性;表面的无序高于内部;表面易析晶。

9.试叙述玻璃表面结构和组成与化学稳定性之间的关系。 书P128-133

第五章

1.为什么说界面对复合材料的性能起着重要的作用?

(1)复合材料界面包含着两相之间的过渡区域的三维界面相,界面相内的化学组分、分子排列、热性能、力学性能等呈连续性变化。

(2)复合材料的性能并非组分材料的性能简单加和,而是产生了1+1〉2的协同效应。 (3)两相复合过程中,会出现热应力(导热系数、膨胀系数的不同)、界面化学效应(官能团之间的作用或反应)和界面结晶效应(成核诱发结晶、横晶)。这些效应引起的界面微观结构和性能特征,对复合材料的性能产生直接的影响。

2.什么是偶联剂?说明硅烷偶联剂对玻璃纤维增强塑料的作用机理。用偶联剂进行表面处理有哪些方法?

(1)偶联剂是分子含有两种不同性质基团的化合物,其中一种基团可与增强材料发生物理或化学作用,另一种基团可与基体发生物理或化学作用。

(2)①X 基团的水解,形成硅醇; ②硅醇的羟基之间以及硅醇的羟基与玻璃纤维表面的羟基形成氢键;③硅羟基间脱水形成硅氧键。

3.举例说明高性能纤维的表面处理方法,怎样表征纤维处理后表面结构与性能的变化? 书P186

4.什么是化学键理论?化学键理论有什么缺陷?举例说明化学键理论在碳纤维表面处理中的应用。

(1)化学键理论认为两相之间实现有效的粘接,两相的表面应含有能相互发生化学反应的活性基团,通过官能团的反应以化学键合形成界面。若两相不能进行化学反应,也通过偶联剂的媒介作用以化学键相互结合。

(2)缺陷:不能解释以下现象 ① 有些偶联剂不含有与基体树脂起反应的活性基团,却有很好的处理效果。②偶联剂在增强纤维表面有多层结构而并非由化学键理论推导的单层结构, ③ 基体树脂固化,热应力松弛效应。

(3)应用:在表面氧化或等离子、辐射等处理过程中,纤维表面产生了羧基、羟基等含氧活性基团,提高了与环氧等基体树脂的反应能力,使界面形成了化学键,大大提高了粘接强度。

第六章

1.聚丙烯经马来酸酐接枝前后其表面对水的侵润性发生怎样的变化?如何证明其侵润性的变化?

2.甲基丙烯酸缩水甘油醚(GMA)是一种含有碳碳双键和环氧基的双官能团化合物,如何将其接枝到聚丙烯的分子侧链上?请设计一种证明GMA是否接枝到聚丙烯上的方法。 3.增强纤维经低温等离子或辐照处理表面会产生自由基,处理后纤维在放置过程中表面活性会逐渐衰减。如何实验证明自由基的产生和衰减? 4.界面结合强度是否越强越好?为什么?

5.复合材料界面力学性能表征有哪些方法?用单丝模型和宏观力学性能测试复合材料的界面力学性能各有什么优缺点? (1)复合材料界面力学性能标准可归纳为两大类:一是常规材料力学实验法 如 短梁弯曲、层间剪切。二是单丝模型法 如 单丝拔脱实验法 断片实验法 界面粘接能测试。

联系合同范文客服:xxxxx#qq.com(#替换为@)