³¬ÉùLamb²¨µÄ¼¤Àø¼°ÆµÂʵ÷г - ͼÎÄ

·¢²¼Ê±¼ä : ÐÇÆÚËÄ ÎÄÕ³¬ÉùLamb²¨µÄ¼¤Àø¼°ÆµÂʵ÷г - ͼÎĸüÐÂÍê±Ï¿ªÊ¼ÔĶÁ

¶þ¡¢Íê³ÉºóÓ¦½»µÄ×÷Òµ£¨°üÀ¨¸÷ÖÖ˵Ã÷Ê顢ͼֽµÈ£© 1. ±ÏÒµÉè¼ÆÂÛÎÄÒ»·Ý£¨²»ÉÙÓÚ1.5Íò×Ö£©£» 2. ÍâÎÄÒëÎÄһƪ£¨²»ÉÙÓÚ5000Ó¢Îĵ¥´Ê£©£» 3. Ïà¹ØÊý¾Ý´¦ÀíͼÏñ¼°MatlabÊýÖµ¼ÆËã³ÌÐò¡£ ¶þ¡¢ Íê³ÉÈÕÆÚ¼°½ø¶È 2010Äê2ÔÂ27ÈÕÖÁ2010Äê6ÔÂ5ÈÕ£¬¹²12ÖÜ¡£ ½ø¶È°²ÅÅ£º (1) 2ÔÂ27ÈÕ-3ÔÂ5ÈÕ£¬²éÔÄ×ÊÁÏ¡¢µ÷ÑУ¬Íê³É¿ªÌⱨ¸æ£» (2) 3ÔÂ6ÈÕ-4ÔÂ10ÈÕ£¬Íê³ÉÀíÂÛÍƵ¼¼°MatlabÊýÖµ¼ÆË㣻 (3) 4ÔÂ11ÈÕ-5ÔÂ10ÈÕ£¬Íê³ÉʵÑ鲿·Ö¼°×«Ð´²¿·Ö±ÏÒµÂÛÎÄ£» (4) 5ÔÂ11ÈÕ-5ÔÂ20ÈÕ£¬Êý¾Ý´¦Àí¼°Íê³É±ÏÒµÂÛÎijõ¸å£» (5) 5ÔÂ21ÈÕ-6ÔÂ14ÈÕ£¬ÂÛÎÄÐ޸ļ°´ð±çPPTÖÆ×÷£» (6) 6ÔÂ15ÈÕ£¬±ÏÒµ´ð±ç¡£ iii

ËÄ¡¢Ö÷Òª²Î¿¼×ÊÁÏ£¨°üÀ¨Ê鿯Ãû³Æ¡¢³ö°æÄêÔµȣ©: [1] Z. Q. Su, L. Ye, Y. Lu. Guided Lamb waves for identification of damage in composite structures: A review[J]. Journal of Sound and Vibration. 2006, 295: 753-780. [2] M. Rguiti, S. Grondel, F. E. youbi, et al. Optimized piezoelectric sensor for a specific application: Detection of Lamb waves[J]. Sensors and Actuators A. 2006, 126: 362-368. [3] Àî¼Òΰ, ³Â»ýí®. ÎÞËð¼ì²âÊÖ²á[M]. »úе¹¤Òµ³ö°æÉç. 2002Äê: 206-214. [4] D. Leduc, B. Morvan, A. C. Hladky, et al. Interaction of Lamb waves with a grating composed of two spatial periodicities: Study in dual space[J]. NDT&E International. 2009, 42:513-517. [5] ËïÑǽÜ, Ô¬É÷·¼, ÇñÀ×, µÈ. »ùÓÚLamb²¨Ïà¿ØÕóºÍͼÏñÔöÇ¿·½·¨µÄËðÉ˼à²â[J]. º½¿Õѧ±¨. 2009, 30(7): 1325-1330. [6] H. S. Yoon, R. DeCicco. Lamb wave excitation and detection with smart fasteners for structural health monitoring[J]. Proc. SPIE. 2010, 7649(14): 2412-2422. [7] J. S. Leng, A. Asundi. Structural health monitoring of smart composite materials by using EFPI and FBG sensors[J]. Sensors and Actuators A: Physical. 2003, 103(3): 330-340. [8] ÍõÇ¿, Ô¬É÷·¼. Î޲ο¼Ö÷¶¯Lamb²¨½á¹¹ËðÉËʱ·´³ÉÏñ¼à²â·½·¨[J]. º½¿Õѧ±¨. 2010, 31(1): 178-183. [9] Õź£Ñà, ËûµÃ°², ÁõÕòÇå, Öø. ²ã×´¸÷ÏòÒìÐÔ¸´ºÏ°åÖеÄÀ¼Ä·²¨[M]. ¿Æѧ³ö°æÉç. 2008Äê: 138-156. [10] Íõ«|, »ÆËÉÁë, ÕÔΰ. ƽ°åºÍ¹ÜµÀÖÜÏòLamb²¨ÆµÉ¢ºÍ²¨½á¹¹ÌØÐÔ[J]. Ç廪´óѧѧ±¨(×ÔÈ»¿Æѧ°æ). 2009, 49(7): 925-928. ϵ(½ÌÑÐÊÒ)Ö÷ÈΣº £¨Ç©Õ£© Äê Ô ÈÕ Ñ§ÔºÖ÷¹ÜÁìµ¼£º £¨Ç©Õ£© Äê Ô ÈÕ iv

½­ËտƼ¼´óѧ±¾¿Æ±ÏÒµÉè¼Æ£¨ÂÛÎÄ£©

Õª Òª

»ùÓÚLamb²¨µÄ²ÄÁÏËðÉ˼ì²âºÍ½á¹¹½¡¿µ¼à²âÔÚº½¿Õ¹¤Òµ¡¢´¬²°ÖÆÔì¡¢ÍÁľ¹¤³ÌºÍÖÇÄܲÄÁϵÈÁìÓòµÃµ½Á˹㷺µÄÑо¿ºÍÓ¦Óᣱ¾¿ÎÌâÔÚÑо¿³¬ÉùLamb²¨²¨¶¯ÀíÂ۵Ļù´¡ÉÏ·ÖÎö°åÖÐLamb²¨µÄ´«²¥ÌØÐÔ£¬²¢Çó³ö×ÔÓÉ°åÖÐLamb²¨ÆµÉ¢·½³ÌµÄÊýÖµ½â¡£ÀûÓÃGaussianº¯Êý¡¢Hamming´°ºÍHanning´°¶ÔÕýÏÒÐźŽøÐе÷ÖÆ£¬È»ºó²ÉÓõ÷ÖƺóµÄÂö³å⧷¢ÐźŶÔÕ³½áÔÚÂÁ±¡°å±íÃæµÄÕý·½ÐÎPZTѹµç¾§Æ¬½øÐм¤Àø£¬´Ó¶øÔÚÂÁ±¡°åÖвúÉú²¢²É¼¯Lamb²¨¡£ÖصãÑо¿Á˸÷ÏòͬÐÔÂÁ±¡°åÖÐLamb²¨µÄ´«²¥ÌØÐÔ¡¢ÆµÉ¢ÌØÐÔ¡¢Ä£Ê½Ê¶±ð¡¢Ä£Ê½Ñ¡ÔñºÍƵÂʵ÷г¡£¶ÔʱÓòÐźŵķÖÎö½á¹û±íÃ÷£¬¼¤ÀøƵÂÊÔÚ10~200kHz·¶Î§ÄÚÄÜÔÚ°åÄڵõ½Ã÷ÏÔµÄLamb²¨Ðźţ¬120~150kHzʱ·¢ÉúгÕñ£¬²É¼¯µÄÐźÅ×îÇ¿£»¶ÔÐźŽøÐÐƵÓò·ÖÎöʱ·¢ÏÖ£¬¸÷ÖÖ¼¤Àø²¨ÐβúÉúµÄLamb²¨ÐźŶ¼·¢ÉúÁËƵɢÏÖÏó£¬ÆäÖвÉÓÃÕýÏÒµ¥ÖÜÆÚÐźż¤Àøʱ°åÖÐLamb²¨µÄƵɢÏÖÏó×îÑÏÖØ£¬¶ø²ÉÓÃHamming´°µ÷ÖƵÄÎå²½²¨Âö³åÐźż¤ÀøʱƵɢ×îС£¬ÊʺÏ×÷Ϊ¼¤ÀøÐźţ»ÊµÑé²âÊÔÁ˸÷ÖÖƵÂÊÏÂA0ºÍS0ģʽLamb²¨µÄȺËٶȲ¢ÓëÀíÂÛÖµÏà±È½Ï£¬·¢ÏÖʵÑé½á¹ûÓëÊýÖµ½â½Ó½ü¡£ÊµÑ黹Ñо¿Á˲ÉÓò»Í¬²¨Ðμ¤Àøʱ²»Í¬Ä£Ê½£¨A0ºÍS0£©Lamb²¨µÄÇ¿¶ÈËæƵÂʵı仯¹Øϵ£¬½á¹û·¢ÏÖÔÚ20~60kHzºÍ100~150kHzÁ½Çø¼äÄÚ£¬A0ºÍS0ģʽLamb²¨µÄÇ¿¶ÈÓÐÃ÷ÏÔ²îÒì¡£Òò´Ë£¬¿ÉÒÔͨ¹ýÑ¡ÔñÊʵ±µÄ¼¤ÀøƵÂÊÀ´»ñµÃģʽµ¥Ò»ÐԺá¢Ç¿¶È¸ß¡¢¶ÔijÀàȱÏÝÃô¸ÐµÄLamb²¨¡£

¹Ø¼ü´Ê£º³¬ÉùÀ¼Ä·²¨£»¼¤ÀøÓë½ÓÊÕ£»ÆµÉ¢ÌØÐÔ£»Ä£Ê½Ê¶±ðÓëÑ¡Ôñ£»¸÷ÏòͬÐÔÂÁ±¡°å

I

½­ËտƼ¼´óѧ±¾¿Æ±ÏÒµÉè¼Æ£¨ÂÛÎÄ£©

Abstract

Material damage detection and structural health monitoring based on Lamb wave are widely studied and applied in the areas of aerospace industry, ship manufacturing, civil engineering and smart material. In this research, the propagation characteristics of Lamb wave were analyzed by the study of the wave theorem of Lamb wave in plate, and the numerical solutions of dispersion equation of Lamb wave in free plate were also calculated. Excitation signals in a variety of waveforms were obtained via modulating the sinusoidal waveform by Gaussian function, Hamming window and Hanning window. Then Lamb wave was actuated and collected in the thin aluminium plate by square PZT crystal wafer which bonded on the thin aluminium plate. The major emphasis is placed on the propagation characteristics, dispersion characteristics, mode identification, mode selection and frequency tuning of Lamb wave in the thin isotropic aluminium plate. The time-domain analysis shows that apparent Lamb wave signals were detected when the excitation frequency ranges from 10kHz to 200kHz, in which, the most intensive signal was detected under a frequency about 120~150kHz due to the harmonic oscillation; The frequency-domain analysis indicates that dispersion phenomenon of Lamb wave exists under any conditions of the excitation signal, in which, the Lamb wave excited by a single-cycle sinusoidal burst pulse shows a serious frequency dispersion, while the Lamb wave excited by a Hamming window modulated five-step waveform burst pulse shows the lowest frequency dispersion. Therefore, the later is the most workable excitation signal. The group velocity of both A0 and S0 modes were measured, which are closed to the theoretical results. The relationship between frequency and signal intensity of both A0 and S0 modes under different conditions of excitation waveforms were studied experimentally to find the intensity of A0 and S0 modes show an apparent difference when the excitation frequency band fall in the ranges of 20~60kHz and 100~150kHz. Accordingly, we can obtain a Lamb wave with good unity, high intensity and sensitive for certain defect types by selecting appropriate excitation frequency.

Keyword£ºUltrasonic Lamb Wave; Excitation and Collection; Dispersion Characteristics;

Mode Identification and Selection; Isotropic Thin Aluminium Plate

II

ÁªÏµºÏͬ·¶ÎÄ¿Í·þ£ºxxxxx#qq.com(#Ì滻Ϊ@)