焦炉煤气湿法脱硫工艺设计(修改过) 2 联系客服

发布时间 : 星期日 文章焦炉煤气湿法脱硫工艺设计(修改过) 2更新完毕开始阅读

河南城建学院本科毕业设计(论文) 生产流程及方案的确定

溶液的总碱度与其硫容量成线性关系,因而提高总碱度是提高硫容量的有效途径,一般处理低硫原料气时,采用的溶液总碱度为0.4N,而对高硫含量的原料气则采用0.8N的总碱度。PH值再8.5~9.0。碱度过高,副反应加剧。

3.2.1.2 NaVO3含量

NaVO3的含量取决于脱硫液的操作硫容,即与富液中的HS-浓度符合化学计量关系。应添加的理论浓度可与液相中HS-的摩尔浓度相当,但在配制溶液时往往要过量,控制过量系数在1.3~1.5左右。

3.2.1.3栲胶浓度

作为氧载体,栲胶浓度应与溶液中钒含量存在着化学反应的计量关系。从络合作用考虑,要求栲胶浓度与钒浓度保持一定的比例,同时还应满足栲胶对碳钢表面缓蚀作用的含量要求。目前还无法有化学反应方程计算所需的栲胶浓度,根据实践经验,比较适宜的栲胶与钒的比例为1.1~1.3左右。工业生产中使用的溶液组成见下表2:

表2 工业生产使用的栲胶溶液组成

溶液类别 稀溶液 浓溶液 总碱度∕N Na2CO3∕(g·L-1) 栲胶∕(g·L-1) NaVO3∕(g·L-1) 0.4 0.8 3~4 6~8 1.8 8.4 1.5 7.0 3.2.2温度

操作温度低,再生效果差;温度过高,副反应加剧,生成大量硫代硫酸钠灯盐类,常温范围内,H2S、CO2脱除率及Na2S2O3生成率与温度关系不敏感。再生温度在45℃以下,Na2S2O3的生成率很低,超过45℃时则急剧升高。通常吸收与再生在同一温度下进行,约为30~40℃。

3.2.3 CO2的影响

栲胶脱硫液具有相当高的选择性。在适宜的操作条件下,它能从含99℅的CO2原料气中将200mg/m3(标)的H2S脱除至45mg/m3(标)以下。但由于溶液吸收CO2后会使溶液的PH值下降,使脱硫效率稍有降低。

9

河南城建学院本科毕业设计(论文) 生产流程及方案的确定

3.3 工艺流程

来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被

冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至23℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下:

H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O

吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。

再生塔内的基本反应如下:

NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S

(NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应:

2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S

从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡沫泵加压后送压滤机进行脱水,形成硫膏成品。 为了达到脱硫效果及硫泡沫易分离,必须在循环液中加入催化剂,在生产中由于各种消耗,也需定期补充催化剂。将HPF催化剂及新鲜水加入反应槽上部催化剂槽人工搅拌,使催化剂溶解,再均匀滴加到反应槽A、B中。

一但出现事故或停产时,反应槽内脱硫液经脱硫循环泵送入事故槽,或直接进入脱硫液放空槽,待检修完毕或停产开工再打回系统中,严禁将脱硫液直接排入下水道。

10

河南城建学院本科毕业设计(论文) 生产流程及方案的确定

拟设计栲胶法脱硫及再生反应过程如下:

(1) 吸收:在吸收塔内原料气与脱硫液逆流接触硫化氢与溶液中碱作用被吸收; (2) 析硫:在反应槽内硫氢根被高价金属离子氧化生成单质硫; (3)再生氧化:在喷射再生槽内空气将酚态物氧化为醌态;

以上过程按顺序连续进行从而完成气体脱硫净化,湿法脱硫和再生工艺流程如下(见图):

1-分离器;2-脱硫塔;3-水封;4-循环槽;5-溶液泵;6-液位调节器; 7-再生槽;8-硫泡沫槽;9-真空过滤机;10-熔硫釜;11-空气压缩机;

图1 湿法栲胶脱硫工艺流程简图

3.4主要设备介绍

3.4.1填料塔

填料塔用于要求高的H2S脱除效率。用作脱硫的填料塔每段填料间设有人孔,以供

11

河南城建学院本科毕业设计(论文) 生产流程及方案的确定

检查用。填料塔结构简单,造价低廉,制造方便。这种塔体,喷淋装置,填料再分布器,栅板以及气,液的进出口等部件组成。而填料是填料塔的核心部作分,填料塔操作性能的好坏与所选的填料有很大的关系,选择填料应当遵循一下原则:单位体积填料的表面积大,气液相接触的自由体积大;填料空隙率要大,气相阻力小;重量轻,机械强度高;耐介质腐蚀,经久耐用,价格低廉。而填料的类型,尺寸和堆积方式决定于所处理的介质的性质。气液流量的大小和允许的压力降。本次设计,我选用的是聚丙烯阶梯环(φ50mm×25 mm×1.5mm)的乱堆填料,这种填料塑料的表面较光滑,所以不易被硫堵塞,用这种填料同时有很高的脱硫效率。填料的作用是完成对脱硫液及气体的再分布,同时为气液分布提供较大的相界面。脱硫液从塔顶经分布器均匀喷淋在填料上,再填料表面形成液膜,并向下流动,与经填料空隙上升的气体接触,完成对H2S的吸收。

3.4.2氧化槽

世界上使用最多的是有空气分布板的垂直槽,圆形多孔板安装于氧化槽的底部,孔径一般为2mm,空气压力必须克服氧化槽内溶液的压头与分布板的阻力,空气在氧化器的截面均匀的鼓泡,液体与空气并流向上流动,硫泡沫在槽顶部的溢流堰分离,分离硫后的清液在氧化槽顶部下面一点引出。这种形式的氧化槽需要鼓风机将空气压入。中国很多工厂使用一种自吸空气喷射型的氧化槽,不需要空气鼓风机。液体加压从喷嘴进入,空气从文丘里的喉管吸入。

氧化槽是一大直径的圆槽,槽内放置多支喷射器。氧化槽目前使用最佳的是双套筒二级扩大式,脱硫液通过喷射再生管道反应,氧化再生后,经过尾管流进浮选筒,在浮选筒进一步氧化再生,并起到硫的浮选作用。由于再生槽采用双套筒,内筒的吹风强度较大,不仅有利于氧化再生,而且有利于浮选。内筒上下各有一块筛板,板上有正方形排列的筛孔,直径15mm,孔间距20mm,开孔率44%。内筒吹风强度大,气液混合物的重度小,而内外筒的环形区基本上无空气泡,因此液体重度大。在内筒和环形空间由于重度不同形成循环。

氧化槽的设计有如下三个基本参数①要求的空气流量;②氧化器的直径;③有效的液体容积。空气流量正比于硫的产量、反比于液体在氧化器内的有效高度,比值可按氧化器内每米有效液面高度氧利用率为0.6%~0.7%来计算。氧化器直径正比于空气流量与空气比重的平方,为了得到良好的硫浮选,空气流速一般选25~30m3/(min·m2)截面。液体在氧化器的停留时间正比于液体流量,要求的停留时间与氧化器数量有关,当用一

12