结晶学和矿物学 赵珊茸 课后思考题 联系客服

发布时间 : 星期二 文章结晶学和矿物学 赵珊茸 课后思考题更新完毕开始阅读

10.试述兰多理论及其意义。 答:兰多理论是统计物理学的内容,是利用矿物的有序参数Q和过剩热力学参数——Ge(过剩自由能)、Se(过剩熵)和He(过剩焓),讨论矿物因温度的变化所发生的相变规律。其核心是矿物的有序参数Q,它是指矿物相变过程中,矿物某些宏观性质的变化程度。这一宏观性质可以是光学性质、元素占位率等物理和化学参数。也就是说,该理论用宏观性质和热力学参数讨论矿物发生的相变,在矿物学研究中具有重要的实际意义。

目前运用兰多理论最多的是架状硅酸盐矿物,如长石类矿物。可以在非常宽广的温度范围内,讨论长石的相变行为;并与量热实验所得到的长石热力学数据充分地联系起来加以分析。

11.举例说明假像和副像及其意义。

答:假像是指交代强烈时,原矿物可全部为新形成的矿物所替代,但仍保持原矿物的晶形。副像是指矿物发生同质多像相变时,其晶体结构及物理性质均发生明显的变化,但原变体的晶形却为新变体所继承下来。由于它们都保存前一种矿物的外形,因此也就保留了前一种矿物的识别标志。我们可以根据前后两种矿物的转变过程,推导矿物形成和演化的规律以及条件。

例如:具有黄铁矿假象的褐铁矿,说明矿物转变过程为黄铁矿转变为褐铁矿,说明原来地质体为岩浆、热液成因,而后经过风化作用形成褐铁矿。具有β-石英副像的α-石英,说明矿物由β-石英(高温石英)向α-石英(低温石英)的转变过程,揭示出原来地质体是在高温条件下形成。

12.概述矿物晶体相变的类型。 答:在开放体系中,体系与环境存在着物质的交换,活性组分总是向着化学位低的方向迁移,组分重新组合,形成新的矿物,从而使体系总自由能最低。这一类相变包括交代作用、水化作用和脱水作用。

在封闭体系中,体系与环境之间只有能量的交换,而无物质上的交换,物理化学条件的改变促使矿物发生晶体结构的转变而化学成分保持不变。晶体结构的变化主要包括同质多像相变和多型相变等。同质多像相变又可以分为重建式相变、移位式相变和有序-无序相变。

第十七章 习题

1.为什么要对矿物进行分类?目前较合理的矿物分类是什么?它与其他分类方案的主要分歧何在?大类、类、族、种的划分依据是什么?如何处理类质同像、同质多像问题?

答:为了系统而全面地研究矿物,就必须对种类繁多的矿物进行科学的分类。

第 37 页 共 37 页

目前较为合理的分类方案是以晶体化学为基础的分类方案,因为决定矿物本质特征的是矿物的化学成分与晶体结构。

其它的分类方案对矿物的特征各有侧重,有根据矿物化学成分为依据的化学成分分类,也有以元素的地球化学特征为依据的地球化学分类和以矿物成因为依据的成因分类。这些分类方案的考虑都没有晶体化学分类全面。

晶体化学分类划分的级序由大到小分别为:大类、类、族和种4级。种是矿物分类中的基本单位。它们的划分依据见下表: 级序

划 分 依 据

举 例 大类

化合物类型

含氧盐大类 类

阴离子或络阴离子种类

硅酸盐类 族

晶体结构型和阳离子性质

长石族 种

一定的晶体结构和化学成分

正长石 K[AlSi3O8]

对同质多像问题,由于变体间虽然化学成分相同,但结构不同,性质差异也较大,故视为各自独立的矿物种。对于类质同像系列的矿物,它们的结构相同,物理性质相似,其化学组成可以在一定范围内变化。国际新矿物及矿物命名委员会规定,只有端元矿物才可作为矿物种而独立命名,类质同像系列的中间成分者可作为矿物种之下的亚种。

第 38 页 共 38 页

2.对于一种新矿物,你认为应如何命名比较科学、合理?

答:矿物命名的依据多种多样,有的是矿物本身的特征,如化学成分、形态、物理性质等命名,有的依据发现该矿物的地点或人或研究学者的名字命名。

如果发现新矿物,以矿物的特征来命名比较合理,因为这样有助于熟悉矿物的主要成分和性质。

第十八章习题

1.自然金属元素矿物的晶体化学特征与形态、物性的关系如何?

答:自然金属元素矿物的化学成分为金属元素,主要包括:铜族元素和部分铂族元素。它们的晶体结构一般为等大球最紧密堆积(大多数为立方最紧密堆积、少量六方最紧密堆积),结构较简单,对称程度较高。化学键是典型的金属键,是金属晶格的晶体。这就决定了矿物的宏观性质是金属晶格晶体的特点。

形态:晶体呈等轴粒状或六方板状,集合体为树枝状、片状、块状等。这是由于内部质点最紧密堆积的缘故。

物理性质:具典型的金属特性:金属色,金属光泽,不透明。硬度低(Os、Ir 例外),解理不发育,强延展性。比重大。电和热的良导体。这是因为它们是金属晶格晶体的缘故。

异。金刚石的空间格子为立方面心格子,晶格中质点以共价键联结,是典型的原子晶格晶体。这些晶体化学特征导致其外形为等轴晶体形态,如立方体、八面体等;物理性质表现为硬度高,光泽强,具脆性,不导电。石墨的空间格子为三方或六方格子,层状结构,层内具共价键—金属键,层间为分子键。这些特征表现在外形上为板状、片状晶体形态;表现在物理性质上为晶体具明显的异向性,具{ 0001 } 极完全解理,硬度低,金属光泽,电的良导体。

2.试以金刚石、石墨为例说明同质多像的概念。为什么它们同为C组成,但形态、物性截然不同?

答:金刚石和石墨的化学成分相同,但它们的晶体结构和晶格类型有很大差异,从而导致了它们宏观形态和物理性质上存在很大的差

3.从石墨的结构特点解释其物性特征。

答:石墨具有典型的层状结构(见右图),层内具共价键—金属键,层间为分子键。这些特征表现在物理性质上为晶体具明显的异向性,具{ 0001 } 极完全解理,硬度低,金属光泽,熔点和沸点高,电的良导体。

第 39 页 共 39 页

4.金属互化物矿物与合金有什么区别?与呈化合物的矿物(如黄铜矿(CuFeS2)、毒砂(FeAsS)等)有什么区别? 答:金属互化物是指两种或两种以上的金属元素按确定比例以金属键和共价键结合在一起形成的物质,合金是指两种或两种以上的金属元素形成的固溶体,以金属键为主,各金属元素的含量是不确定的,是可以连续变化的。而化合物中可以存在阴离子、阳离子、金属原子、非金属原子等,以离子键、共价键、金属键、分子键等形成化合,各离子、原子的含量比基本上固定,在类质同象的范围内各离子、原子含量可以在一点的范围变化。

第十九章

1.简单硫化物和复硫化物各有什么基本特征?这些基本特征主要由哪些因素引起?

答:简单硫化物, 组分简单,对称程度一般较高,多为等轴或六方晶系,少数属斜方或单斜晶系。大多数硫化物的晶形较好,特别是复硫化物更常见完好晶形。简单硫化物解理发育,复硫化物解理不完全或无解理。简单硫化物的硬度较低,一般在2~4,层状结构者(辉钼矿、雌黄??)为 1~2 ;但复硫化物具较高的硬度,一般5~6.5,个别达7~8。

形成上述差异的原因在于它们晶体结构中质点的排布和化学键力的分布不同。简单硫化物的晶体结构可以认为是S2-作最紧密堆积,阳离子充填空隙,而且化学键有离子健向金属键或共价键过渡的特点。而复硫化物的晶体结构中,哑铃状 [S2]2-的伸长方向在结构中犬牙交错配置,使各方向键力相近,故解理极不完全,而硬度大。

2.对比金刚石、闪锌矿、黄铜矿晶体结构的异同。 答:闪锌矿(ZnS)的空间格子为立方面心格子,晶体结构中S2-作立方最紧密堆积,而Zn2+充填一半的四面体空隙,从而构成稳定的结构。而黄铜矿(CuFeS2)的结构是闪锌矿的衍生结构,只是将阳离子由Zn2+换成了Fe2+和Cu2+,且Fe2+与Cu2+相间分布。而金刚石空间格子也是立方面心格子,从质点的排布上看还是可以参考闪锌矿的结构,将金刚石结构看成其中一套相当点的C原子作立方最紧密堆积,相当于闪锌矿中S2-的占位,另一套相当点的C原子充填一半的四面体空隙,相当于闪锌矿中Zn2+的占位(金刚石中的C原子可以划分为两套相当点)。

3.磁黄铁矿产生“缺席构造”的原因?磁黄铁矿的“超结构”是什么含义?

答:磁黄铁矿的化学成分通常为非化学计量性,通常以Fe1-xS表示(其中x=0~0.125),产生的原因是该矿物中部分Fe2+被Fe3+替代,为了保持晶体的电荷平衡,结构中阳离子位置会出现部分空位,这种现象称为缺席构造。如果空位和阳离子在晶体结构中的分布是完全有序的,就会使原晶胞扩大1倍或几倍,这种结构称为超结构。

4.辉锑矿、辉铋矿为什么呈柱状晶形,并有{010}完全解理?

第 40 页 共 40 页