高中数学培优专题08 数列(解析版) 联系客服

发布时间 : 星期四 文章高中数学培优专题08 数列(解析版)更新完毕开始阅读

证明:(1)∵bn?an?n,∴bn?1?an?1?n?1. 又∵an?1?4an?3n?1,∴

bn?1an?1?n?1?4an?3n?1??n?14?an?n?????4.

bnan?nan?nan?n又∵b1?a1?1?1?1?2,

∴数列?bn?是首项为2,公比为4的等比数列.

n?1解:(2)由(1)求解知,bn?2?4,

n?1∴an?bn?n?2?4?n,

∴S?a?a???a?2(1?4?42?n12n?4n?1)?(1?2?3??n)?2?1?4n?1?4?n?n?1?2?2n114?1??n2?n. ?32218.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】在公差不为0的等差数列{an}中,a1,

?2an,n?2k?1,a3,a9成公比为a3的等比数列,又数列{bn}满足bn??(k?N*).

?2n,n?2k,(1)求数列{an}的通项公式; (2)求数列{bn}的前2n项和T2n.

2(4n?1)?2n(n?1) 【答案】(1)an?n;(2)T2n?3【解析】

(1)公差d不为0的等差数列{an}中,a1,a3,a9成公比为a3的等比数列,

22可得a3?a1a9,a3?a1a3,可得(a1?2d)?a1(a1?8d),a1?1,化简可得a1?d?1,

即有an?n;

?2n,n?2k?1(2)由(1)可得bn??,k?N*;

2n,n?2k?前2n项和T2n?(2?8?32???22n?1)?(4?8?12???4n)

2(1?4n)12(4n?1)??n(4?4n)??2n(n?1).

1?423

37

19.【四川省名校联盟2019届高考模拟信息卷(一)】已知数列?an?的前n项和为Sn,且满足

2Sn??an?n?n?N*?.

(Ⅰ)求证:数列?an???1??为等比数列; 2?(Ⅱ)求数列?an?1?的前n项和Tn.

n?n1??1?【答案】(Ⅰ)详见解析;(Ⅱ)Tn?????1??.

4????3??2【解析】

(Ⅰ)2Sn??an?n,

当n?2时,2Sn?1??an?1?n?1, 两式相减,得2an??an?an?1?1,即an?∴an?11an?1?. 3311?1?1????an?1??,所以数列?an??为等比数列。 23?2?2??1?111?.由(Ⅰ)知,数列?an??是以?为首项,为公比的等比数列。

2?363?n(Ⅱ)由2S1??a1?1,得a1?11?1?所以an?????26?3?nn?11?1?????,

2?3?1?1?1∴an?????,

2?3?21?1?1∴an?1?????,

2?3?2n1??1????1????6?3????1?n?n?n1??∴T???????1??. n124????3??21?3n20.【江西省临川一中2019届高三年级考前模拟考试】已知正项数列?an?的前n项和为Sn,满足

22Sn?1?2an?an?n?N??.

38

(1)求数列?an?的通项公式;

1111(2)已知对于n?N?,不等式

S????1S2S3S?M恒成立,求实数M的最小值; n【答案】(1)an?1n?2;(2)

229. 【解析】

(1)n?1时,2a21?1?2a1?a1,又an?0,所以a1?1,

当n?2时,2S2n?1?2an?an?n?N??

2S1?2a2?n?1?n?1?an?1?n?N?,

作差整理得:an?an?1?2?an?an?1??an?an?1?, 因为an?0,故an?an?1?0,所以an?a1n?1?2, 故数列?an?1n?为等差数列,所以an?2. (2)由(1)知Sn?n?3?n?4,所以144?11?S?????, nn?n?3?3?nn?3?从而1S?1?1??1 1S2S3Sn=4??3????1?1?4?????11??11??2?5???????????11??11??11??36??n?2?n?1?????n?1?n?2?????n?n?3???? ?4?3??1?11111?4?11111?222?3?n?1?n?2?n?3???3??6?n?1?n?2?n?3???9. 所以M?229,故M的最小值为229.

1.已知公差为正数的等差数列{an}的前n项和为Sn,a1=1,且a2,S2+1,a8成等比数列. (1)求数列{an}的通项公式;

(2)若数列{bn}满足b1=1,nbn+1=2anbn,求数列{an+bn}的前n项和Tn. 【解答】解:(1)设等差数列{an}的公差为d(d>0), ∵a1=1.a2.S2+1.a8成等比数列,即(S2+1)2=a2a8,

39

∴(3+d)2=(1+d)(1+7d),

∴3d2+d﹣4=0,∴(3d+4)(d﹣1)=0,∵d>0,∴d=1, ∴an=1+(n﹣1)=n;

(2)∵nbn+1=2anbn.由(1)得nbn+1=2nbn,

可得

,又b1=1,

所以{bn}是以1为首项,以2为公比的等比数列,bn=2n﹣

1, an+bn=n+2n﹣

1,

则前n项和Tn=(1+2+…+n)+(1+2+…+2n﹣

1)

n(n+1)

n(n+1)+2n﹣1.2.已知数列{an}的前n项和Sn满足2Sn=(an﹣1)(an+2),且.

(1)求数列{an}的通项公式;

(2)若

,求数列{bn}的前n项和Tn.

【解答】解:(1)2Sn=(an﹣1)(an+2),可得2a1=2S1=(a1﹣1)(a1+2), 解得a1=2(﹣1舍去);

当n≥2时,2Sn﹣1=(an﹣1﹣1)(an﹣1+2),且2Sn=(an﹣1)(an+2), 两式相减可得2an=an2﹣an﹣12+an﹣an﹣1, 化为(an+an﹣1)(an﹣an﹣1﹣1)=0,

可得an﹣an﹣1=1,数列{an}的通项公式为an=n+1;

(2)bn,

即有前n项和Tn

3.

3.设Sn为等差数列{an}的前n项和,且a2=15,S5=65. (Ⅰ)求数列{an}的通项公式;

(Ⅱ)设数列{bn}的前n项和为Tn,且Tn=Sn﹣10,求数列{|bn|}的前n项和Rn.

40