循环流化床锅炉氮氧化物的防治 联系客服

发布时间 : 星期六 文章循环流化床锅炉氮氧化物的防治更新完毕开始阅读

在锅炉高负荷和高床料含碳量的情况下,由于一系列化学反应,NOx的排放量大为降低。 三 控制NOx的措施

目前,随着环保排放标准的日趋严格,降低各种污染气体的排放量已显得更为紧迫。针对影响NOx生成的因素,在循环流化床锅炉中可采取以下措施控制NOx的排放量。

(1) 选择合适的床温

降低床温不仅可有效地降低NOx的排放水平,而且有利于脱硫,但不利的影响是会使N2O排放量上升,而且CO浓度增加,燃烧效率会下降。综合考虑各方面的影响,循环流化床床温以控制在850~900℃较为适宜。

(2) 选择性还原

在悬浮段或分离器区域注入液胺或者尿素等可有效地还原NOx气体、降低其排放量。此项措施的限制条件是还原反应温度,一般地,注胺时反应温度约为810℃,尿素时为890℃,且当地氧浓度不宜过高。

(3) 天然气再燃技术

在密相区域注入天然气可使NOx失氧还原为N2,同时产生CO。为了提高燃烧效率,可在天然气注入口上方再注入补燃空气,这样既可以控制NOx的排放水平,又可以保证较高的燃烧效率。

(4) 改变锅炉的结构形式

多粒子流化床锅炉是将循环流化床与鼓泡床结合起来的新型流化床,其设计是主燃烧室以较大的流化速度运行。出主燃烧室的颗粒进入以鼓泡床运行的副燃烧室。其优点是降低运行温度和过量氧率,并使每MJ燃料的NOx和N2O排放降至10mg以下。Wojtowicz(1994)提出了燃烧过程中低NOx,高N2O和尾部控制N2O的锅炉形式方案。在燃烧室前部为矮的、稀相段形式的鼓泡床,燃料在此加入但不添加石灰石,形成富燃料区。后室通过溢流堰与前室隔开,注入二次风和焦炭而形成富氧区。在后室的上部加入石灰石和形成旋流的切向三次风。该种形式流化床的特点是石灰石仅在富氧的后室中加入,N2O在二次燃烧和催化作用下分解而实现对N2O排放的控制。该形式锅炉运行的困难在于要求有丰富的操作经验和很高的运行水平,能够均匀加煤、合理地调节各次风量等。 (5)分段燃烧

1 二段燃烧

二段燃烧是流化床燃烧中最常采用的方法,它实际上是通过降低密相床中O2的浓度来降低氮氧化合物的排放,但O2降低量太多会降

低脱硫和燃烧效率。Shimizu(1991)研究发现二段燃烧中一次风率在0.9~1.0时对氮氧化合物排放的影响最大,对挥发分含量高、中、低的三中煤的燃烧试验发现一次风率提高,NOx和N2O的排放量均增大;分段燃烧时SO2和CO的排放也有不同程度的下降,因此它是一种安全可行的燃烧方式。

2 三段燃烧

平间利昌等(1997)提出了改进的三段燃烧法。试验在实验室规模的鼓泡流化床燃烧台上进行,研究发现两个主要的因素决定了对氮氧化合物的影响,即稀相段温度和一次风量与总风量以及二次风与二次燃料的当量比(试验用气体为丙烷)。当鼓泡床上部温度保持在1120K,风量比分别为0.8和0.7左右时,与单级燃烧相比较,N2O和NOx分别降低至1/10和2/5。

3 反分级燃烧

Lyngfell(1995)提出了反分级燃烧的概念。反分级燃烧采取一次风量达80%,无二次风,其余20%的风量在旋风分离器后加入。试验在12MW的循环流化床试验台上进行,发现O2在燃烧段的上部降低而下部提高,N2O和NO的排放量分别为40×10-6 kg/m3和53.6×10-6 kg/m3。这种燃烧方式对脱硫没有任何影响。但燃烧效率却降低了2%,另外燃烧段上部的过低氧量对炉体的影响还有待于研究。

流化床分级燃烧的许多技术可借鉴煤分炉分级燃烧中许多成熟的技术,寻找在流化床燃烧特殊环境下的特征,是降低氮氧化合物排放和提高燃烧效率的有效手段。 四 降低N2O排放量的技术措施

(1)二次燃烧法

目前,比较有希望的N2O排放控制方法是所谓“二次燃料注射法”,即“再燃烧法(reburning )”或“二次燃烧法

(afterburning)”。该方法是在旋风分离器的入口或出口处装设若干喷嘴,向内喷射可燃物质,利用其燃烧时产生的高温(950~1000℃),通过N2O与H、OH自由基的反应或N2O与气体分子的反应,来实现N2O分解,从而降低N2O排放量。在该方法中,燃料燃烧温度和烟气在高温区的停留时间是两个重要的运行参数。实验室研究证明,用CH4和C3H8作二次燃料,可使N2O的排放量接近于零。在一台12MW循环流化床上,用液化石油气作为二次燃料进行试验,结果表明:在低过量空气条件下(<3.5%O2),N2O减少量也达60%。同时,流化床的运行不受影响,SO2、NOx和CO的数量也未见增加。H2、CH4、C2H4、C2H6、CO等,都可作为二次燃料使用,其效果依次是H2>CH4>C2H4和C2H6>CO。此外,燃料油、木粉和锯末也都可作为二次燃料。

(2) 床料中加入金属Fe