曲线积分与曲面积分 期末复习题 高等数学下册(上海电机学院) 联系客服

发布时间 : 星期六 文章曲线积分与曲面积分 期末复习题 高等数学下册(上海电机学院)更新完毕开始阅读

第十章 曲线积分与曲面积分答案

一、选择题 1.曲线积分

?x??f(x)?e?sinydx?f(x)cosydy与路径无关,其中f(x)有一阶连续偏导L?数,且f(0)?0,则f(x)? B

A.

1?xx11(e?e) B. (ex?e?x) C. (ex?e?x) D.0 222?ydx?xdy? C ??x?yC2.闭曲线C为x?y?1的正向,则

A.0 B.2 C.4 D.6 3.闭曲线C为4x?y?1的正向,则

22?ydx?xdy? D 22??4x?yC2A.?2? B. 2? C.0 D. ? 4.?为YOZ平面上y?z?1,则

22??(x??y2?z2)ds? D

11? D. ? 42222225.设C:x?y?a,则??(x?y)ds? C

A.0 B. ? C.

CA.2?a B. ?a C. 2?a D. 4?a 6. 设?为球面x?y?z?1,则曲面积分

2222233??1??dSx?y?z12222的值为 [ B ]

A.4? B.2? C.? D.?

7. 设L是从O(0,0)到B(1,1)的直线段,则曲线积分

?Lyds?[ C ]

A. 8. 设I=?则I=[D ]

2211 B. ? C. D. ?

2222Lyds 其中L是抛物线y?x2上点(0, 0)与点(1, 1)之间的一段弧,

A.

555555?155?1 B. C. D. 6126129. 如果简单闭曲线 l 所围区域的面积为 ?,那么 ? 是( D ) A.

11; B. xdx?ydyydy?xdx; ??ll22 C.

211; D. ydx?xdyxdy?ydx。

2?l2?l22210.设S:x?y?z?R(z?0),S1为S在第一卦限中部分,则有 C

A.C.

??xds?4??xds B.??yds?4??yds

SS1SS1??zds?4??zds D.??xyzds?4??xyzds

SS1SS1

二、填空题

1. 设L是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分

?Lydx?(ey2?x)dy? -2

2.S为球面x2?y2?z2?a2的外侧,则??(y?z)dydz?(z?x)dzdx?(x?y)dxdy?0

s3.

x2?y2?1x?y?ydx?xdy22 =?2?

4.曲线积分

322a2?a,其中是圆心在原点,半径为的圆周,则积分值为 (x?y)dsC??C5.设∑为上半球面z?4?x2?y22?z?0?,则曲面积分???x2?y2?z2?ds= 32π

?6. 设曲线C为圆周x?y?1,则曲线积分

2???xC2?y2?3x?ds? 2? . 7. 设C是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分8. 设?为上半球面z?4?x?y,则曲面积分

22?C(x?y)ds?1+832 ??1??dsx2?y2?z2的值为 ?。

9. 光滑曲面z=f(x,y)在xoy平面上的投影区域为D,则曲面z=f(x,y)的面积是

S???1?(D?z2?z)?()2d? ?x?y310.设L是抛物线y?x上从点(2,8)到点(0,0)的一段弧,则曲线积分(2x?4y)dx? L?12 11、设?为螺旋线x?cost,y?sint,z?3t上相应于t从0到?的一段弧,

则曲线积分I??(x2?y2?z2)ds? 2??1??2? 。

?12、设L为x?y?a的正向,则

222xdy?ydx??Lx2?y2? 2? 。

三、计算题 1.eL?x2?y2 ds,其中L为圆周x2?y2?1,直线y?x及x轴在第一象限所围图形的边界。

解:记线段OA方程y?x,0?x?线段OB方程y?0,0?x?1。

?x?cos?2?,圆弧AB方程?,0??? 24?y?sin?则原式=

OA?ex2?y2ds+

AB?ex2?y2ds+

OB?ex2?y2ds=?22?0e2x2dx+?4ed?+?exdx

001=2(e?1)? 2.

?4e #

?Lx2?y2dx?y[xy?ln(x?x2?y2)]dy,其中L为曲线y?sinx,0?x??与直线

段y?0,0?x??所围闭区域D的正向边界。 解:利用格林公式,P?

x2?y2,Q?y[xy?ln(x?x2?y2)],则

,?P??yyx2?y2?Qy ?y2?22?xx?y故原式=

??(D?Q?P?)dxdy???y2dxdy??x?yD22??0dx?sinx0y2dy=

1?34 # sinxdx??039223.ydx?xdy,其中L为圆周x?y?R的上半部分,L的方向为逆时针。

?L2解:L的参数方程为?故原式=

?x?Rcost,t从0变化到?。

?y?Rsint??0[R2sin2t(?Rsint)?R2cos2t(Rcost)]dt

=R34322[(1?cost)(?sint)?(1?sint)cost]dt=?R # ?03?224.求抛物面z?x?y被平面z?1所割下的有界部分?的面积。

解:曲面?的方程为z?x?y,(x,y)?D,这里D为?在XOY平面的投影区域

22{(x,y)x2?y2?1}。

故所求面积=

??D221?zx?zydxdy???D1?4(x2?y2)dxdy

??d??02?101?4r2rdr?55?1? # 6222xx5、计算(esiny?my)dx?(ecosy?m)dy,其中L为圆(x?a)?y?a(a?0)的上

?L半圆周,方向为从点A(2a,0)沿L到原点O。

解:添加从原点到点A的直线段后,闭曲线所围区域记为D,利用格林公式

P?(exsiny?my),Q?excosy?m,

于是(esiny?my)dx?(ecosy?m)dy+

L?P?Q?excosy?m,?excosy ?y?xx?xxOA??(esiny?my)dx?(excosy?m)dy

m?a2=m??dxdy?

2D而

xx(esiny?my)dx?(ecosy?m)dy=?0dx?0?0,于是便有 ?2aOA?0m?a2 ?(esiny?my)dx?(ecosy?m)dy= #

2Lxx2222226.(y?z)dx?(z?x)dy?(x?y)dz,其中L为球面x?y?z?1在第一

?L222卦限部分的边界,当从球面外看时为顺时针。

解:曲线由三段圆弧组成,设在YOZ平面内的圆弧AB的参数方程

?x?0?? ?y?cost,t从变化到0。

2?z?sint?于是

0422222222== [sint(?sint)?cost(cost)]dt(y?z)dx?(z?x)dy?(x?y)dz???32AB由对称性即得

?(yL2?z2)dx?(z2?x2)dy?(x2?y2)dz?3?(y2?z2)dx?(z2?x2)dy?(x2?y2)dz?4AB # 7.

??(x?1)dydz?(y?1)dzdx?(z?1)dxdy,其中?为平面x?y?z?1,x?0,?y?0,

z?0所围立体的表面的外侧。

解:记?1为该表面在XOY平面内的部分,?2为该表面在YOZ平面内的部分,