传感器与自动检测技术实验报告(打印4个) 联系客服

发布时间 : 星期二 文章传感器与自动检测技术实验报告(打印4个)更新完毕开始阅读

单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

实验二 金属箔式应变片――全桥性能实验

一、实验目的:了解全桥测量电路的优点。

二、基本原理:全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初

始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件和单元:同实验一 四、实验步骤:

2、传感器安装同实验一。

3、根据图1-4接线,实验方法与实验二相同。将实验结果填入表1-3;进行灵敏度和非线性误差计算。

1-4全桥性能实验接线图

表1-3全桥输出电压与加负载重量值 重量 电压 六、思考题:

1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

2、 某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电

阻应变片组成电桥,是否需要外加电阻。

R4

F

图1-5应变式传感器受拉时传感器圆周面展开图

F R2 R4 R3 F F R1 R3 R1 R2 实验三 差动变压器的性能实验

一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排

列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频

信号源、直流电源(音频振荡器)、万用表。

四、实验步骤:

1、根据图3-1,将差动变压器装在差动变压器实验模板上。

图3-1差动变压器电容传感器安装示意图

2、 在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频

振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。图中1、2、3、4、5、6为连接线插座的编号。接线时,航空插头上的号码与之对应。当然不看插孔号码,也可以判别初次级线圈及次级同名端。判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。

3、 旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位

移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

图3-2双踪示波器与差动变压器连结示意图

4、 实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据

表3-1画出Vop-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。 表(3-1)差动变压器位移X值与输出电压数据表 V(mv) X(mm)

五、思考题:

1、 用差动变压器测量较高频率的振幅,例如1KHZ的振动幅值,可以吗?差动变压器测

量频率的上限受什么影响?