动物源抗菌肽的研究现状和展望 联系客服

发布时间 : 星期六 文章动物源抗菌肽的研究现状和展望更新完毕开始阅读

研究表明,硫酸锌(100 mg/kg)和纳米氧化锌(100 mg/kg)对猪PR-39的表达水平无显著影响,而高浓度氧化锌(3 000 mg/kg)能显著提高猪PR-39的表达水平(378.26%)。饲粮中添加细菌多糖能提高骨髓和肝脏中PR-39以及肝脏中Hepcidin的表达水平[49]。

其他学者研究表明,精氨酸和异亮氨酸等可以诱导人上皮细胞β-防御素的表达[50-52],维生素A的代谢产物视黄酸可诱导猪PR-39的表达[43]。综上所述,以营养调控的方式促进内源抗菌肽的表达在目前更适合抗菌肽在畜牧生产中的应用,然而,这仍有赖于对抗菌肽表达调控机制更深入的研究。 5 抗菌肽的分子设计与改良

为了获得抗菌活性高、细胞毒性低、稳定性好的抗菌肽,将模板肽通过分子改良的方法被广泛应用。抗菌肽的分子改良主要依据其构效关系实施,这是设计抗菌肽所遵循的最基本原则。国内外普遍采用的改良方法主要包括:1)将2种不同源肽活性片段进行分子嵌合,形成杂合肽[53];2)通过氨基酸替换,二硫键删除的方式将天然肽进行分子改造[54];3)对天然肽截取活性片段以提高抗菌功能[55];4)通过肽文库与计算机模拟进行高通量筛选[56]。

Liu等[57]采用分子杂合的方法构建了具有β发夹结构的杂合肽LB-PG和CA-PG,研究结果表明获得的杂合肽不仅安全性好,抗菌谱广,且具有缓解炎症的功能。此外通过氨基酸替换的方式对乳铁蛋白肽LFP-20进行改良,获得的改良肽LF-6具有更高的抗菌活性与低的真核细胞毒性。

另外Dong等[58]通过将天然抗菌肽截取的方式提高了禽β-防御素4的抗菌活性,同时降低了其溶血毒性;其还将具有广谱抗菌活性的RR7片段与抗细菌生物膜活性的FV7片段进行分子嵌合,获得兼具两者优势的杂合肽R-FV-I16[59]。 6 抗菌肽的重组表达

基因重组表达的方法可能是目前最经济的获得大量抗菌肽的手段。但是,由于抗菌肽极易受到蛋白酶的攻击,且表达产物往往对宿主细胞有毒性,因此,抗菌肽的外源表达较其他多肽类药物更为困难。为了克服以上难题,研究者探索出众多表达策略,涉及的表达系统主要有大肠杆菌和酵母表达系统。大肠杆菌表达系统具有遗传背景稳定、成本低、周期短的优点,但难以表达结构较为复杂的抗菌肽,而酵母表达系统虽然能够直接表达多种抗菌肽,但是其表达成本较高,产量较低。通过将目的肽与分子伴侣融合表达可有效解决抗菌肽对宿主菌的毒性以及易被蛋白水解酶降解的问题,常用的分子伴侣有硫氧还蛋白(thioredoxin,Trx)[60]、谷胱甘肽转移酶(glutathione-S-transferase,GST)[61]、泛素相关小修饰蛋白(small ubiquitin-like modifier,SUMO)

[62]

等。Bi等

[63]

在大肠杆菌BL21中融合表达了杂合肽

LfcinB(1-15)-Melittin(5-12),纯化后产量达到35 mg/L培养液,同时其利用毕赤酵母表达系统高产表达了鸟的防御素Avian β-defensin 6,产量达到了114.9 mg/L培养液[64]。Chen等[65]利用SUMO融合表达技术在枯草芽孢杆菌表达系统中成功表达了天蚕素Cecropin AD,纯化后产量为30.6 mg/L培养液。Luan等[66]通过比

较不同分子伴侣,不同诱导温度、时间等条件,利用SUMO融合表达技术在枯草芽孢杆菌表达系统中成功表达了蛇源抗菌肽C-BF。 7 小结与展望

在抗生素滥用导致耐药细菌产生、药物残留以及环境污染的今天,抗菌肽的研究无疑为解决这些问题带来了希望。然而,真正把抗菌肽应用于养殖业目前仍面临着许多挑战。首先是抗菌肽的来源问题,天然肽含量低,分离纯化困难,化学合成成本高,重组表达得率低。其次是抗菌肽的活性问题,与抗生素相比,杀菌能力偏弱,抗菌谱偏窄。而且不同肽在抗菌或免疫调节功能上各有侧重,不能统一标准。再次是抗菌肽的体内稳定性问题,对胃蛋白酶和胰蛋白酶的敏感让口服或饮水等给药方式受到限制,而对血清和金属离子的敏感亦让注射给药受到约束。另外还有抗菌肽的毒性问题,由于其在体内的吸收代谢机制不甚明了,其潜在的毒性如局部过敏反应、溶血作用等都不容忽视。最后是抗菌肽的耐药性问题,虽然其膜作用机制不存在抗生素样的耐药性,但由于应激反应触发的病原性免疫进化而导致的耐药性仍然存在。

随着抗菌肽研究的不断深入以及生物技术的发展,相信突破抗菌肽走向养殖业的技术壁垒将变为可能。通过构建合适的表达系统,完善表达策略将获得大量成本低、产量大、活性高的重组抗菌肽;通过基因改造、人工修饰等途径将最大限度地提升抗菌肽的抗菌功能;运用酰胺化、环化、D-氨基酸替代、包被等方法将提高抗菌肽在体内的稳定性和安全性;深入探讨抗菌肽的药代动力学将进一步挖掘抗菌肽在体内发挥作用的机制,以上研究将会为研发高效安全的抗菌肽制剂提供重要基础。

参考文献:

[1] YEAMAN M R,YOUNT N Y.Unifying themes in host defence effector polypeptides[J].Nature Reviews Microbiology,2007,5(9):727–740.

[2] LI Y M,XIANG Q,ZHANG Q H,et al.Overview on the recent study of antimicrobial peptides:origins,functions,relative mechanisms and application[J].Peptides,2012,37(2):207–215.

[3] YOUNT N Y,YEAMAN M R.Immunocontinuum:perspectives in antimicrobial peptide mechanisms of action and resistance[J].Protein and Peptide Letters,2005,12(1):49–67.

[4] LIU Y F,HAN F F,XIE Y G,et al.Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides[J].Biometals,2011,24(6):1069–1078.

[5] HAN F F,LIU Y F,XIE Y G,et al.Antimicrobial peptides derived from different animals:comparative studies of antimicrobial properties,cytotoxicity and mechanism of action[J].World Journal of Microbiology & Biotechnology,2011,27(8):1847–1857.

[6] LV Y F,WANG J J,GAO H,et al.Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin pmap-36[J].Plos One,2014,9(1):e86364.

[7] LAN Y,YE Y,KOZLOWSKA J,et al.Structural contributions to the intracellular targeting strategies of antimicrobial peptides[J].Biochimica Et Biophysica Acta-Biomembranes,2010,1798(10):1934–1943.

[8] HWANG J Y,KIM Y.RNA interference of an antimicrobial peptide,gloverin,of the beet armyworm,spodoptera exigua,enhances susceptibility to Bacillus thuringiensis[J].Journal of Invertebrate Pathology,2011,108(3):194–200. [9]

DE

SMET

K,CONTRERAS

R.Human

antimicrobial

peptides:defensins,cathelicidins

and

histatins[J].Biotechnology Letters,2005,27(18):1337–1347.

[10] CHU H,PAZGIER M,JUNG G,et al.Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets[J].Science,2012,337(6093):477–481.

[11] NIJNIK A,HANCOCK R.Host defence peptides:antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections[J].Emerging Health Threats Journal,2009,2:e1.

[12] AFACAN N J,YEUNG A T Y,PENA O M,et al.Therapeutic potential of host defense peptides in antibiotic-resistant infections[J].Current Pharmaceutical Design,2012,18(6):807–819.

[13] NIYONSABA F,IWABUCHI K,SOMEYA A,et al.A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis[J].Immunology,2002,106(1):20–26.

[14] MOOKHERJEE M.Medical emergency-challenges and needs of the hour[J].Journal of the Indian Medical Association,2006,104(5):219.

[15] KANDLER K,SHAYKHIEV R,KLEEMANN P,et al.The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands[J].International Immunology,2006,18(12):1729–1736.

[16] YANG D,CHEN Q,SCHMIDT A P,et al.LL-37,the neutrophil granule- and epithelial cell-derived cathelicidin,utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils,monocytes,and T cells[J].Journal of Experimental Medicine,2000,192(7):1069–1074.

[17] ZHANG Z F,CHERRYHOLMES G,CHANG F,et al.Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils[J].European Journal of Immunology,2009,39(11):3181–3194. [18] GRACIA A,POLEWICZ M,HALPERIN S A,et al.Antibody responses in adult and neonatal BALB/c mice to immunization with novel Bordetella pertussis vaccine formulations[J].Vaccine,2011,29(8):1595–1604.

[19] CHROMEK M,SLAMOVá Z,BERGMAN P,et al.The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection[J].Nature Medicine,2006,12(6):636–641.

[20] NIZET V,OHTAKE T,LAUTH X,et al.Innate antimicrobial peptide protects the skin from invasive bacterial

infection[J].Nature,2001,414(6862):454–457.

[21] LANDE R,GREGORIO J,FACCHINETTI V,et al.Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide[J].Nature,2007,449(7162):564–569.

[22] VANDAMME D,LANDUYT B,LUYTEN W,et al.A comprehensive summary of LL-37,the factotum human cathelicidin peptide[J].Cellular Immunology,2012,280(1):22–35.

[23] OTTE J M,ZDEBIK A E,BRAND S,et al.Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity[J].Regulatory Peptides,2009,156(1/2/3):104–117.

[24] KIATSURAYANON C,NIYONSABA F,SMITHRITHEE R,et al.host defense (antimicrobial) peptide,human β-defensin-3,improves the function of the epithelial tight-junction barrier in human keratinocytes[J].Journal of Investigative Dermatology,2014,134(8):2163–2173.

[25] TANG Z R,DENG H,ZHANG X L,et al.Effects of orally administering the antimicrobial peptide buforin Ⅱon small intestinal mucosal membrane integrity,the expression of tight junction proteins and protective factors in weaned

piglets

challenged

by

enterotoxigenic

Escherichia

coli[J].Animal

Feed

Science

and

Technology,2013,186(3/4):177–185.

[26] 刘倚帆.动物源抗菌肽的分子改良及其对猪肠道上皮屏障功能的保护作用研究[D].博士学位论文.杭州:浙江大学,2012.

[27] MAHER S,FEIGHERY L,BRAYDEN D J,et al.Melittin as an epithelial permeability enhancer I:Investigation

of

its

mechanism

of

action

in

Caco-2

monolayers[J].Pharmaceutical

Research,2007,24(7):1336–1345.

[28] WESTERHOFF H V,ZASLOFF M,ROSNER J L,et al.Functional synergism of the magainins PGLa and magainin-2

in

Escherichia

coli,tumor

cells

and

liposomes[J].European

Journal

of

Biochemistry,1995,228(2):257–264.

[29] VORLAND L H,OSBAKK S A,PERSTOLEN T,et al.Interference of the antimicrobial peptide lactoferricin B with the action of various antibiotics against Escherichia coli and Staphylococcus aureus[J].Scandinavian Journal of Infectious Diseases,1999,31(2):173–177.

[30] 刘丁健,曾其恒,李秀宝,等.复合抗菌肽制剂对保育猪生长性能和健康水平的影响[J].养猪,2011(1):15–16. [31] 刘显军,丁雪,陈静,等.抗菌肽和抗生素对断奶仔猪生长性能的影响[J].中国畜牧兽医,2012,39(7):252–256.

[32] 陈红伟,吴俊伟,刘娟,等.抗菌肽RSRP与常用抗菌药的体外联合药敏试验[J].中国兽医科学,2013,43(1):91–94.