汽车排放控制系统的检修毕业论文 - 图文 联系客服

发布时间 : 星期五 文章汽车排放控制系统的检修毕业论文 - 图文更新完毕开始阅读

降,并不能完全说明是由催化转化器阻塞造成的。发动机供油量减少时,进气歧管的真空度也会下降。因此与真空试验相比,排气背压试验更能真实反映催化转化器的情况。以上方法只能检查催化转化器机械故障,催化转化器的性能好坏,也就是其转化效率的高低,则需要通过下列的检查来判断。

4.加热法

催化转化器在正常工作状态下,由于氧化反应产生了大量的反应热,因此可通过温差对比来判断催化转化器性能的好坏。启动发动机,预热至正常工作温度,将发动机转速维持在2500r/min左右,将车辆举升,用数字式温度计(接触式或非接触式红外线激光温度计)测量催化转化器进口和出口的温度,需尽量靠近催化转化器(50mm内)。催化转化器出口的温度应至少高于进口温度10~15%,大多数正常工作的催化转化器,其催化转化器出口的温度高于进口温度20~25%。

如果车辆在主催化转化器之前还安装了副催化转化器,主催化转化器出口温度应高于进口温度15~20%,如果出口温度值低于以上的范围,则催化转化器工作不正常,需更换;如果出口温度值超过以上范围,则说明废气中含有异常高浓度的CO和HC,需对发动机本身做进一步的检查。

5.其它方法

通过对比整车排放情况来判断催转化器效率的方法是不科学的。因为汽车排放的好坏与各系统的工作状况有关,不可排除的误差因素较多。如用冷热怠速时的排气浓度变化来检查催化转化器转化效率就是不太准确的方法。发动机冷车时,由于汽缸壁较冷,燃烧不完全而产生大量的CO和HC,而发动机热车怠速时,由于燃烧条件好转,发动机已处于闭环控制状态,不需要催化转化器的作用,排气浓度也会大大降低。因转化效率,可比性较差。

2.4 排气再循环(EGR)系统及检修

图2-4 排气再循环

排气再循环是指把发动机排出的部分废气回送到进气歧管,并与新鲜混合气一起再次进入气缸。由于废气中含有大量的CO2,而CO2不能燃烧却吸收大量的热,使气缸中混合气的燃烧温度降低,从而减少了NOx的生成量。排气再循环是净化排气中NOx的主要方法。如图2-4所示,在新鲜的混合气中掺入废气之后,混合气的热值降低,致使发动机的有效功率下降。为了作到既能减少NOx的排放,又能保持发动机的动力性,必须根据发动机运转的工况对再循环的废气量加以控制。NOx的生成量随发动机负荷的增大而增多,因此,再循环的废气量也应随负荷而增加。在暖机期间或怠速时,NOx生成量不多,为了保持发动机运转的稳定性,不进行排气再循环。在全负荷或高转速下工作时,为了使发动机有足够的动力性,也不进行排气再循环。

故障及排除 故障现象:

一辆进口奥迪A64.2轿车,用户反映该车在行驶过程中经常出现突然松开油门踏板后发动机剧烈抖动或马上熄火的现象,车辆在行驶时并无其他不良状况,并称该车因此故障已在多家修理厂进行过维修,但故障终未得到解决。

故障诊断:

根据用户反映的情况,首先连接故障诊断仪V.A.G1551检测了发动机电控系统,但系统中无故障系统储存。为了明确故障原因,又利用诊断仪读取了各传感器和各执行器的动态数据流,发现相关的一些技术参数均在规定范围内。通过以上的检查,表明故障出在发动机电控系统方面的可能性不大。 故障分析:

故障排除进行到此时,我们也对该车的故障进行了进一步的分析。一般能造成发动机怠速熄火的原因很多,如进气系统某气阀或管接头漏气,燃油系统压力不足或系统因某种原因脏堵,点火系统漏电或电火花能量不足,燃油蒸发排放控制系统漏气,以及废气再循环系统(EGR)工作不正常等。

故障排除:

根据该车EGR系统结构特点分析,产生故障的可能性有两个:

1.电磁阀关闭不严,从而使得进气管的真空度不受电磁阀控制而进入EGR阀真空膜室将EGR阀打开,导致废气进入气缸参与燃烧。

2.EGR阀关闭不严,导致废气不受EGR阀的控制直接进入气缸参与燃烧。我们先切断了电磁阀与EGR阀之间的真空通道,结果故障依旧,证明是EGR阀关闭不严。拆下EGR阀检查,阀门果然漏气。我们发现阀门和阀座上均有积碳,正是这些积碳导致阀门关闭不严漏气。经清除EGR阀门及阀座的积碳,并用研磨膏研磨后,测试不漏气装复后试车,故障排除。 故障总结:

众所周知,EGR系统的工作是受发动机控制单元控制的,发动机控制单元根据发动机转速,负荷、温度、进气流量及排气温度信号,通过控制电磁阀适时地打开,使排气系统中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧。少部分废气进入气缸参与混合气的燃烧后,降低了燃烧室中的温度,因NOx是在高温富氧条件下生成的,故抑制了NOx的生成,从而降低了废气中的NOx的含量。当发动机在怠速、低速小负荷及冷机时,发动机控制单元控制废气不参与再循环,避免发动机性能受到影响;当发动机超过一定的转速、负荷且达到一定的温度时,发动机控制单元控制少部分废气参与再循环,且参与再循环的废气量能够根据发动机转速、负荷、温度及废气温度的不同而改变,以及达到废气中的NOx含量最低。一旦发动机的EGR系统出现故障,将会影响发动机混合气的正常燃烧,从而影响发动机的动力性。特别是在发动机怠速、低速、小负荷及冷机工况时,这种影响尤为明显。

第三章 燃油蒸气排放控制

3.1汽油蒸发形成的废气

随着外界温度的降低,油箱内部的汽油蒸气凝结,因此产生部分真空,从油箱盖吸入空气;而随着外界温度的上升,空气与燃油蒸气(HC)一起排出,此外,除油泵外,燃油管道等接头处渗出的汽油蒸气逸散至大气中。以上各种汽油蒸气,成为大气污染源之一。

3.2油蒸气挥发控制(EVAP )及检修

为了防止燃油箱向大气排放燃油蒸气而污染大气环境,在发动机控制系统中采取了由发动机ECU控制的活性炭罐蒸发污染控制装置。如图3-1所示。

当燃油受热或大气压力降低(海拔高度增加)时,燃油箱中形成燃油蒸气,经过燃油管将燃油蒸气存储在活性炭罐中。发动机工作时,ECU根据发动机转速、温度、空气流量等信号,控制炭罐电磁阀的开闭,当打开时,空气从活性炭罐大气入口处吸进炭罐,冲洗活性炭罐延长活性炭罐寿命,并与燃油蒸气混合送至发动机燃烧。发动机工作时的燃油量包括喷油器喷射油量和来自燃油箱蒸发控制燃油蒸气。

图3-1活性炭罐蒸发污染控制装置

为了控制燃油箱逸出的燃油蒸汽,电控发动机普遍采用了碳罐,油箱中的燃油蒸汽在发动机不运转时被碳罐中的活性碳所吸附,当发动机运转时,依靠进气管中的真空度将燃油蒸汽吸入发动机中。电子